On Learning Random DNF Formulas Under the Uniform Distribution

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, THEORY & METHODS
J. C. Jackson, R. Servedio
{"title":"On Learning Random DNF Formulas Under the Uniform Distribution","authors":"J. C. Jackson, R. Servedio","doi":"10.4086/toc.2006.v002a008","DOIUrl":null,"url":null,"abstract":"We study the average-case learnability of DNF formulas in the model of learning from uniformly distributed random examples. We define a natural model of random monotone DNF formulas and give an efficient algorithm which with high probability can learn, for any fixed constant γ>0, a random t-term monotone DNF for any t = O(n2−γ). We also define a model of random nonmonotone DNF and give an efficient algorithm which with high probability can learn a random t-term DNF for any t=O(n3/2−γ). These are the first known algorithms that can successfully learn a broad class of polynomial-size DNF in a reasonable average-case model of learning from random examples.","PeriodicalId":55992,"journal":{"name":"Theory of Computing","volume":"26 1","pages":"342-353"},"PeriodicalIF":0.7000,"publicationDate":"2005-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4086/toc.2006.v002a008","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 19

Abstract

We study the average-case learnability of DNF formulas in the model of learning from uniformly distributed random examples. We define a natural model of random monotone DNF formulas and give an efficient algorithm which with high probability can learn, for any fixed constant γ>0, a random t-term monotone DNF for any t = O(n2−γ). We also define a model of random nonmonotone DNF and give an efficient algorithm which with high probability can learn a random t-term DNF for any t=O(n3/2−γ). These are the first known algorithms that can successfully learn a broad class of polynomial-size DNF in a reasonable average-case model of learning from random examples.
均匀分布下随机DNF公式的学习
研究了均匀分布随机样本学习模型中DNF公式的平均可学习性。我们定义了随机单调DNF公式的一个自然模型,并给出了一个高效的算法,该算法可以高概率地学习任意固定常数γ>0的任意t = O(n2−γ)的随机t项单调DNF。我们还定义了一个随机非单调DNF模型,并给出了一个高概率学习任意t=O(n3/2 - γ)随机t项DNF的算法。这是第一个已知的算法,可以在一个合理的平均情况模型中从随机样本中学习,成功地学习一个广泛的多项式大小的DNF。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theory of Computing
Theory of Computing Computer Science-Computational Theory and Mathematics
CiteScore
2.60
自引率
10.00%
发文量
23
期刊介绍: "Theory of Computing" (ToC) is an online journal dedicated to the widest dissemination, free of charge, of research papers in theoretical computer science. The journal does not differ from the best existing periodicals in its commitment to and method of peer review to ensure the highest quality. The scientific content of ToC is guaranteed by a world-class editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信