{"title":"Rotation-vibration spectra for ground state of NaH and its isotopes with explicitly multireference configuration interaction method","authors":"Xiaoting Liu, G. Liang, Xiaomei Zhang, B. Yan","doi":"10.4208/JAMS.022116.041216A","DOIUrl":null,"url":null,"abstract":"High-level ab initiocalculations utilizing explicitly correlatedmulti-reference configuration interaction method (MRCI-F12), considering Davidson modification(Q), core-valence correlation correction(CV) and scalar relativistic correction(SR), were per- formed to compute the Born-Oppenheimer potential energy curve (PEC) of the ground state X 1 S + of NaH. On the base of the PEC, we obtained vibrational and rotational energy levels information of the ground state X 1 S + . The vibrational and rotational spectroscopic constants of X 1 S + were compared with the available experimental val- ues. We also report rotation-vibration spectra of the ground state for the isotopes of NaH, NaD and NaT molecules. The equilibrium internuclear distances Re and dissoci- ation energies De were calculated to be 1.8865u Aand 15823.29cm 1 for the ground state X 1 S + of NaH, which are in good agreement with the experimental results of 1.8859u A and 15815±5cm 1 .","PeriodicalId":15131,"journal":{"name":"Journal of Atomic and Molecular Sciences","volume":"38 1","pages":"125-134"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atomic and Molecular Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4208/JAMS.022116.041216A","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
High-level ab initiocalculations utilizing explicitly correlatedmulti-reference configuration interaction method (MRCI-F12), considering Davidson modification(Q), core-valence correlation correction(CV) and scalar relativistic correction(SR), were per- formed to compute the Born-Oppenheimer potential energy curve (PEC) of the ground state X 1 S + of NaH. On the base of the PEC, we obtained vibrational and rotational energy levels information of the ground state X 1 S + . The vibrational and rotational spectroscopic constants of X 1 S + were compared with the available experimental val- ues. We also report rotation-vibration spectra of the ground state for the isotopes of NaH, NaD and NaT molecules. The equilibrium internuclear distances Re and dissoci- ation energies De were calculated to be 1.8865u Aand 15823.29cm 1 for the ground state X 1 S + of NaH, which are in good agreement with the experimental results of 1.8859u A and 15815±5cm 1 .