Integrating Ridge-type regularization in fuzzy nonlinear regression

IF 2.5 3区 数学 Q1 MATHEMATICS, APPLIED
R. Farnoosh, J. Ghasemian, O. S. Fard
{"title":"Integrating Ridge-type regularization in fuzzy nonlinear regression","authors":"R. Farnoosh, J. Ghasemian, O. S. Fard","doi":"10.1590/S1807-03022012000200006","DOIUrl":null,"url":null,"abstract":"In this paper, we deal with the ridge-type estimator for fuzzy nonlinear regression models using fuzzy numbers and Gaussian basis functions. Shrinkage regularization methods are used in linear and nonlinear regression models to yield consistent estimators. Here, we propose a weighted ridge penalty on a fuzzy nonlinear regression model, then select the number of basis functions and smoothing parameter. In order to select tuning parameters in the regularization method, we use the Hausdorff distance for fuzzy numbers which was first suggested by Dubois and Prade [8]. The cross-validation procedure for selecting the optimal value of the smoothing parameter and the number of basis functions are fuzzified to fit the presented model. The simulation results show that our fuzzy nonlinear modelling performs well in various situations. Mathematical subject classification: Primary: 62J86; Secondary: 62J07.","PeriodicalId":50649,"journal":{"name":"Computational & Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2012-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational & Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1590/S1807-03022012000200006","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we deal with the ridge-type estimator for fuzzy nonlinear regression models using fuzzy numbers and Gaussian basis functions. Shrinkage regularization methods are used in linear and nonlinear regression models to yield consistent estimators. Here, we propose a weighted ridge penalty on a fuzzy nonlinear regression model, then select the number of basis functions and smoothing parameter. In order to select tuning parameters in the regularization method, we use the Hausdorff distance for fuzzy numbers which was first suggested by Dubois and Prade [8]. The cross-validation procedure for selecting the optimal value of the smoothing parameter and the number of basis functions are fuzzified to fit the presented model. The simulation results show that our fuzzy nonlinear modelling performs well in various situations. Mathematical subject classification: Primary: 62J86; Secondary: 62J07.
模糊非线性回归中脊型正则化的积分
本文利用模糊数和高斯基函数研究了模糊非线性回归模型的脊型估计。收缩正则化方法用于线性和非线性回归模型,以产生一致的估计。本文在模糊非线性回归模型上提出加权脊罚,选择基函数个数和平滑参数。为了在正则化方法中选择调谐参数,我们使用了由Dubois和Prade[8]首先提出的模糊数的Hausdorff距离。选择平滑参数最优值和基函数个数的交叉验证过程被模糊化以拟合所提出的模型。仿真结果表明,本文提出的模糊非线性模型在各种情况下都具有良好的性能。数学学科分类:初级:62J86;二级:62 j07。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational & Applied Mathematics
Computational & Applied Mathematics Mathematics-Computational Mathematics
CiteScore
4.50
自引率
11.50%
发文量
352
审稿时长
>12 weeks
期刊介绍: Computational & Applied Mathematics began to be published in 1981. This journal was conceived as the main scientific publication of SBMAC (Brazilian Society of Computational and Applied Mathematics). The objective of the journal is the publication of original research in Applied and Computational Mathematics, with interfaces in Physics, Engineering, Chemistry, Biology, Operations Research, Statistics, Social Sciences and Economy. The journal has the usual quality standards of scientific international journals and we aim high level of contributions in terms of originality, depth and relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信