E. Lutgens, M. Gijbels, M. Smook, P. Heeringa, P. Gotwals, V. Koteliansky, M. Daemen
{"title":"Transforming Growth Factor-&bgr; Mediates Balance Between Inflammation and Fibrosis During Plaque Progression","authors":"E. Lutgens, M. Gijbels, M. Smook, P. Heeringa, P. Gotwals, V. Koteliansky, M. Daemen","doi":"10.1161/01.ATV.0000019729.39500.2F","DOIUrl":null,"url":null,"abstract":"The transition from stable to rupture-prone and ruptured atherosclerotic plaques involves many processes, including an altered balance between inflammation and fibrosis. An important mediator of both is transforming growth factor (TGF)-&bgr;, and a pivotal role for TGF-&bgr; in atherogenesis has been postulated. Here, we determine the in vivo effects of TGF-&bgr; inhibition on plaque progression and phenotype in atherosclerosis. Recombinant soluble TGF-&bgr; receptor II (TGF&bgr;RII:Fc), which inhibits TGF-&bgr; signaling, was injected in apolipoprotein E-deficient mice for 12 weeks (50 &mgr;g, twice a week intraperitoneally) as early treatment (treatment age 5 to 17 weeks) and delayed treatment (age 17 to 29 weeks). In the early treatment group, inhibition of TGF-&bgr; signaling treatment resulted in a prominent increase in CD3- and CD45-positive cells in atherosclerotic lesions. Most profound effects were found in the delayed treatment group. Plaque area decreased 37.5% after TGF&bgr;RII:Fc treatment. Moreover, plaque morphology changed into an inflammatory phenotype that was low in fibrosis: lipid cores were 64.6% larger, and inflammatory cell content had increased 2.7-fold. The amount of fibrosis decreased 49.6%, and intraplaque hemorrhages and iron and fibrin deposition were observed frequently. TGF&bgr;RII:Fc treatment did not result in systemic effects. These results reveal a pivotal role for TGF-&bgr; in the maintenance of the balance between inflammation and fibrosis in atherosclerotic plaques.","PeriodicalId":8418,"journal":{"name":"Arteriosclerosis, Thrombosis, and Vascular Biology: Journal of the American Heart Association","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"305","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arteriosclerosis, Thrombosis, and Vascular Biology: Journal of the American Heart Association","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1161/01.ATV.0000019729.39500.2F","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 305
Abstract
The transition from stable to rupture-prone and ruptured atherosclerotic plaques involves many processes, including an altered balance between inflammation and fibrosis. An important mediator of both is transforming growth factor (TGF)-&bgr;, and a pivotal role for TGF-&bgr; in atherogenesis has been postulated. Here, we determine the in vivo effects of TGF-&bgr; inhibition on plaque progression and phenotype in atherosclerosis. Recombinant soluble TGF-&bgr; receptor II (TGF&bgr;RII:Fc), which inhibits TGF-&bgr; signaling, was injected in apolipoprotein E-deficient mice for 12 weeks (50 &mgr;g, twice a week intraperitoneally) as early treatment (treatment age 5 to 17 weeks) and delayed treatment (age 17 to 29 weeks). In the early treatment group, inhibition of TGF-&bgr; signaling treatment resulted in a prominent increase in CD3- and CD45-positive cells in atherosclerotic lesions. Most profound effects were found in the delayed treatment group. Plaque area decreased 37.5% after TGF&bgr;RII:Fc treatment. Moreover, plaque morphology changed into an inflammatory phenotype that was low in fibrosis: lipid cores were 64.6% larger, and inflammatory cell content had increased 2.7-fold. The amount of fibrosis decreased 49.6%, and intraplaque hemorrhages and iron and fibrin deposition were observed frequently. TGF&bgr;RII:Fc treatment did not result in systemic effects. These results reveal a pivotal role for TGF-&bgr; in the maintenance of the balance between inflammation and fibrosis in atherosclerotic plaques.