EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A DISCRETE FRACTIONAL BOUNDARY VALUE PROBLEM

A. Selvam, R. Dhineshbabu
{"title":"EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A DISCRETE FRACTIONAL BOUNDARY VALUE PROBLEM","authors":"A. Selvam, R. Dhineshbabu","doi":"10.12732/ijam.v33i2.7","DOIUrl":null,"url":null,"abstract":"Abstract: This present work discusses existence and uniqueness of solutions for the following discrete fractional antiperiodic boundary value problem of the form C 0 ∆ α kx(k) = f (k + α− 1, x(k + α− 1)) , for k ∈ [0, l + 2]N0 = {0, 1, ..., l + 2}, with boundary conditions x(α − 3) = −x(α+ l), ∆x(α−3) = −∆x(α+ l), ∆2x(α−3) = −∆2x(α+ l), where f : [α− 2, α+l]Nα−2×R → R is continuous and C 0 ∆ α k is the Caputo fractional difference operator with order 2 < α ≤ 3. Finally, the main results are illustrated by suitable examples.","PeriodicalId":14365,"journal":{"name":"International journal of pure and applied mathematics","volume":"14 1","pages":"283"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of pure and applied mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12732/ijam.v33i2.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Abstract: This present work discusses existence and uniqueness of solutions for the following discrete fractional antiperiodic boundary value problem of the form C 0 ∆ α kx(k) = f (k + α− 1, x(k + α− 1)) , for k ∈ [0, l + 2]N0 = {0, 1, ..., l + 2}, with boundary conditions x(α − 3) = −x(α+ l), ∆x(α−3) = −∆x(α+ l), ∆2x(α−3) = −∆2x(α+ l), where f : [α− 2, α+l]Nα−2×R → R is continuous and C 0 ∆ α k is the Caputo fractional difference operator with order 2 < α ≤ 3. Finally, the main results are illustrated by suitable examples.
一类离散分数阶边值问题解的存在唯一性
摘要:本文讨论了C 0∆α kx(k) = f (k + α−1,x(k + α−1))的离散分数阶反周期边值问题解的存在唯一性,其中k∈[0,1 + 2]N0 ={0,1,…, l + 2},边界条件x(α−3)=−x(α+ l),∆x(α−3)=−∆x(α+ l),∆2x(α−3)=−∆2x(α+ l),其中f: [α−2,α+l]Nα−2×R→R连续,C 0∆α k为2阶< α≤3的Caputo分数差分算子。最后,通过适当的实例对主要结果进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信