A mutual reference shape based on information theory

S. Jehan-Besson, C. Tilmant, A. Cesare, A. Lalande, A. Cochet, J. Cousty, J. Lebenberg, M. Lefort, P. Clarysse, R. Clouard, Laurent Najman, L. Sarry, F. Frouin, M. Garreau
{"title":"A mutual reference shape based on information theory","authors":"S. Jehan-Besson, C. Tilmant, A. Cesare, A. Lalande, A. Cochet, J. Cousty, J. Lebenberg, M. Lefort, P. Clarysse, R. Clouard, Laurent Najman, L. Sarry, F. Frouin, M. Garreau","doi":"10.1109/ICIP.2014.7025178","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the estimation of a reference shape from a set of different segmentation results using both active contours and information theory. The reference shape is defined as the minimum of a criterion that benefits from both the mutual information and the joint entropy of the input segmentations and is then called a mutual shape. This energy criterion is here justified using similarities between information theory quantities and area measures, and presented in a continuous variational framework. This framework brings out some interesting evaluation measures such as the specificity and sensitivity. In order to solve this shape optimization problem, shape derivatives are computed for each term of the criterion and interpreted as an evolution equation of an active contour. Some synthetical examples allow us to cast the light on the difference between our mutual shape and an average shape. Our framework has been considered for the estimation of a mutual shape for the evaluation of cardiac segmentation methods in MRI.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":"107 1","pages":"887-891"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7025178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we consider the estimation of a reference shape from a set of different segmentation results using both active contours and information theory. The reference shape is defined as the minimum of a criterion that benefits from both the mutual information and the joint entropy of the input segmentations and is then called a mutual shape. This energy criterion is here justified using similarities between information theory quantities and area measures, and presented in a continuous variational framework. This framework brings out some interesting evaluation measures such as the specificity and sensitivity. In order to solve this shape optimization problem, shape derivatives are computed for each term of the criterion and interpreted as an evolution equation of an active contour. Some synthetical examples allow us to cast the light on the difference between our mutual shape and an average shape. Our framework has been considered for the estimation of a mutual shape for the evaluation of cardiac segmentation methods in MRI.
基于信息论的相互参考形状
在本文中,我们考虑从一组不同的分割结果中估计一个参考形状,同时使用活动轮廓和信息论。参考形状被定义为同时受益于输入分割的互信息和联合熵的准则的最小值,然后称为互形状。这个能量准则在这里是合理的,使用信息论量和面积度量之间的相似性,并在连续变分框架中提出。该框架提出了一些有趣的评价指标,如特异性和敏感性。为了解决这一形状优化问题,对准则的每一项计算形状导数,并将其解释为活动轮廓的演化方程。一些综合的例子可以让我们了解我们的共同形状和平均形状之间的差异。我们的框架已被考虑用于评估MRI中心脏分割方法的相互形状的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信