EXPERIENCE OF USING ELECTRICAL TOMOGRAPHY, RADON SURVEY AND MICROSEISMIC SOUNDING IN SEARCH FOR PIPES CONTROLLED BY FAULT ZONES

IF 0.8 Q4 GEOCHEMISTRY & GEOPHYSICS
K. Seminsky, S. Bornyakov, A. Bobrov, A. Shagun
{"title":"EXPERIENCE OF USING ELECTRICAL TOMOGRAPHY, RADON SURVEY AND MICROSEISMIC SOUNDING IN SEARCH FOR PIPES CONTROLLED BY FAULT ZONES","authors":"K. Seminsky, S. Bornyakov, A. Bobrov, A. Shagun","doi":"10.5800/gt-2020-11-2-0484","DOIUrl":null,"url":null,"abstract":"The complex of geophysical methods was successfully applied in the Alakit-Markha kimberlite field of the Yakutsk diamondiferous province. A pipe was identified in the local forecast area specified within the field at the previous stage of prospecting. The studies using electric tomography (ET), radon survey (RS) and microseismic sounding (MS) covered an area of ≈1000⨯500 m. Based on the jointly processed ET and RS plan images and MS profiles, a tubular body was detected in the sedimentary cover. It is confined to a fault node and stands out among the host rocks by low electrical resistivity, increased soil radon concentrations and high spectral ratios of the horizontal and vertical components of microseisms. Its complex shape is manifested at the ground surface by two isometric structures (each being several hundred meters long), which jointly form a dike-like body at a depth of ≈40 m, as shown by the electrical tomography images. According to the MS data, its root part is detected to comprise one or two fractured narrow zones that are traceable to a depth of 2 km and below. The structure of the identified body and its chemical composition will be determined after exploratory drilling is complete. Today there are grounds to conclude that using ET, RS and MS methods jointly as a complex described in the article proved effective for identifying pipes controlled by fault zones in the sedimentary cover areas.","PeriodicalId":44925,"journal":{"name":"Geodynamics & Tectonophysics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2020-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geodynamics & Tectonophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5800/gt-2020-11-2-0484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The complex of geophysical methods was successfully applied in the Alakit-Markha kimberlite field of the Yakutsk diamondiferous province. A pipe was identified in the local forecast area specified within the field at the previous stage of prospecting. The studies using electric tomography (ET), radon survey (RS) and microseismic sounding (MS) covered an area of ≈1000⨯500 m. Based on the jointly processed ET and RS plan images and MS profiles, a tubular body was detected in the sedimentary cover. It is confined to a fault node and stands out among the host rocks by low electrical resistivity, increased soil radon concentrations and high spectral ratios of the horizontal and vertical components of microseisms. Its complex shape is manifested at the ground surface by two isometric structures (each being several hundred meters long), which jointly form a dike-like body at a depth of ≈40 m, as shown by the electrical tomography images. According to the MS data, its root part is detected to comprise one or two fractured narrow zones that are traceable to a depth of 2 km and below. The structure of the identified body and its chemical composition will be determined after exploratory drilling is complete. Today there are grounds to conclude that using ET, RS and MS methods jointly as a complex described in the article proved effective for identifying pipes controlled by fault zones in the sedimentary cover areas.
利用电层析成像、氡测量和微地震测深寻找受断层带控制的管道的经验
地球物理综合方法在雅库茨克钻石省Alakit-Markha金伯利岩矿区成功应用。在前一阶段的勘探中,在现场指定的局部预测区域内发现了一根管道。电层析成像(ET)、氡测量(RS)和微震测深(MS)的研究面积约为1000 m。基于联合处理的ET和RS平面图像和MS剖面,在沉积盖层中检测到管状体。它局限于一个断层节点,并以低电阻率、土壤氡浓度增加和微震水平和垂直分量的高频谱比在宿主岩石中脱颖而出。其复杂的形状在地表表现为两个等距结构(每个都有几百米长),在约40 m的深度共同形成一个堤状体,如电断层扫描图像所示。根据MS数据,它的根部被检测到包括一个或两个裂缝狭窄的区域,可追溯至2公里及以下的深度。待勘探钻探完成后,再确定鉴定体的结构及其化学成分。今天,有理由得出结论,将ET、RS和MS方法联合使用,作为文章中描述的一种综合方法,对于识别沉积覆盖区内受断裂带控制的管道是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geodynamics & Tectonophysics
Geodynamics & Tectonophysics GEOCHEMISTRY & GEOPHYSICS-
CiteScore
1.20
自引率
14.30%
发文量
95
审稿时长
24 weeks
期刊介绍: The purpose of the journal is facilitating awareness of the international scientific community of new data on geodynamics of continental lithosphere in a wide range of geolchronological data, as well as tectonophysics as an integral part of geodynamics, in which physico-mathematical and structural-geological concepts are applied to deal with topical problems of the evolution of structures and processes taking place simultaneously in the lithosphere. Complex geological and geophysical studies of the Earth tectonosphere have been significantly enhanced in the current decade across the world. As a result, a large number of publications are developed based on thorough analyses of paleo- and modern geodynamic processes with reference to results of properly substantiated physical experiments, field data and tectonophysical calculations. Comprehensive research of that type, followed by consolidation and generalization of research results and conclusions, conforms to the start-of-the-art of the Earth’s sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信