S. Bertoluzza, M. Pennacchio
{"title":"Preconditioning the Mortar Method by Substructuring: The High Order Case.","authors":"S. Bertoluzza, M. Pennacchio","doi":"10.1002/anac.200410008","DOIUrl":null,"url":null,"abstract":"<p>We analyze a class of preconditioners for the mortar method, based on substructuring. After splitting in a suitable way the degrees of freedom in <i>interior</i>, <i>edge</i> and <i>vertex</i>, we study the performance of a block Jacobi type preconditioner for which the condition number of the preconditioned matrix only grows polylogarithmically. Unlike the previous work by Achdou, Maday and Widlund [1], which is restricted to the case of first order finite element, this paper relies on abstract assumptions and therefore applies to finite element of any order. Moreover, the use of a suitable coarse preconditioner (whose effect we analyze) makes this technique more efficient. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)</p>","PeriodicalId":100108,"journal":{"name":"Applied Numerical Analysis & Computational Mathematics","volume":"1 2","pages":"434-454"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/anac.200410008","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Analysis & Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anac.200410008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
We analyze a class of preconditioners for the mortar method, based on substructuring. After splitting in a suitable way the degrees of freedom in interior, edge and vertex, we study the performance of a block Jacobi type preconditioner for which the condition number of the preconditioned matrix only grows polylogarithmically. Unlike the previous work by Achdou, Maday and Widlund [1], which is restricted to the case of first order finite element, this paper relies on abstract assumptions and therefore applies to finite element of any order. Moreover, the use of a suitable coarse preconditioner (whose effect we analyze) makes this technique more efficient. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
用子结构预处理砂浆法:高阶情况。
分析了一类基于子结构的砂浆法预调节器。在对内部、边和顶点的自由度进行适当的分割后,研究了预条件矩阵的条件数只以多对数增长的块Jacobi型预条件的性能。与Achdou, Maday和Widlund等人之前的工作不同,他们的工作仅限于一阶有限元的情况,本文依赖于抽象的假设,因此适用于任何阶的有限元。此外,使用合适的粗预调节器(我们分析了其效果)使该技术更有效。(©2004 WILEY-VCH Verlag GmbH &KGaA公司,Weinheim)
本文章由计算机程序翻译,如有差异,请以英文原文为准。