Mappings preserving Segal's entropy in von Neumann algebras

IF 0.9 4区 数学 Q2 Mathematics
A. Luczak, H. Podsędkowska
{"title":"Mappings preserving Segal's entropy in von Neumann algebras","authors":"A. Luczak, H. Podsędkowska","doi":"10.5186/AASFM.2019.4439","DOIUrl":null,"url":null,"abstract":"We investigate the situation when a normal positive linear unital map on a semifinite von Neumann algebra leaving the trace invariant does not change the Segal entropy of the density of a normal, not necessarily normalised, state. Two cases are dealt with: a) no restriction on the map is imposed, b) the map represents a repeatable instrument in measurement theory which means that it is idempotent. Introduction In the paper, the question of invariance of Segal’s entropy under the action of a normal positive linear unital map is addressed in the case of a semifinite von Neumann algebra. The notion of Segal’s entropy was introduced by Segal in [9] for semifinite von Neumann algebras as a direct counterpart of von Neumann’s entropy defined for the full algebra B(H) of all bounded linear operators on a Hilbert space by means of the canonical trace. However, in the case of an arbitrary semifinite von Neumann algebra, where instead of the canonical trace we have a normal semifinite faithful trace, substantial differences between these two entropies arise. Perhaps the most fundamental one consists in the fact that while a normal state on B(H) is represented by a positive operator of trace one (the so-called ‘density matrix’), in the case of an arbitrary semifinite von Neumann algebra this ‘density matrix’ can be an unbounded operator. This prompted Segal to consider only the states whose ‘density matrices’ were in the algebra. In our analysis, we avoid this restriction as well as we allow the trace to be semifinite and not finite, the latter being also often assumed while dealing with Segal’s entropy. On the way to the main theorems, some auxiliary results about strict operator convexity or Jensen’s inequality for unbounded measurable operators are obtained which seem to be interesting and of some importance in their own right. 1. Preliminaries and notation Let M be a semifinite von Neumann algebra of operators acting on a Hilbert space H with a normal semifinite faithful trace τ , identity 1, and predual M∗. By M we shall denote the set of positive operators in M , and by M ∗ —the set of positive functionals in M∗. These functionals will be sometimes referred to as (nonnormalised) states. https://doi.org/10.5186/aasfm.2019.4439 2010 Mathematics Subject Classification: Primary 46L53; Secondary 81P45.","PeriodicalId":50787,"journal":{"name":"Annales Academiae Scientiarum Fennicae-Mathematica","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Academiae Scientiarum Fennicae-Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5186/AASFM.2019.4439","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

We investigate the situation when a normal positive linear unital map on a semifinite von Neumann algebra leaving the trace invariant does not change the Segal entropy of the density of a normal, not necessarily normalised, state. Two cases are dealt with: a) no restriction on the map is imposed, b) the map represents a repeatable instrument in measurement theory which means that it is idempotent. Introduction In the paper, the question of invariance of Segal’s entropy under the action of a normal positive linear unital map is addressed in the case of a semifinite von Neumann algebra. The notion of Segal’s entropy was introduced by Segal in [9] for semifinite von Neumann algebras as a direct counterpart of von Neumann’s entropy defined for the full algebra B(H) of all bounded linear operators on a Hilbert space by means of the canonical trace. However, in the case of an arbitrary semifinite von Neumann algebra, where instead of the canonical trace we have a normal semifinite faithful trace, substantial differences between these two entropies arise. Perhaps the most fundamental one consists in the fact that while a normal state on B(H) is represented by a positive operator of trace one (the so-called ‘density matrix’), in the case of an arbitrary semifinite von Neumann algebra this ‘density matrix’ can be an unbounded operator. This prompted Segal to consider only the states whose ‘density matrices’ were in the algebra. In our analysis, we avoid this restriction as well as we allow the trace to be semifinite and not finite, the latter being also often assumed while dealing with Segal’s entropy. On the way to the main theorems, some auxiliary results about strict operator convexity or Jensen’s inequality for unbounded measurable operators are obtained which seem to be interesting and of some importance in their own right. 1. Preliminaries and notation Let M be a semifinite von Neumann algebra of operators acting on a Hilbert space H with a normal semifinite faithful trace τ , identity 1, and predual M∗. By M we shall denote the set of positive operators in M , and by M ∗ —the set of positive functionals in M∗. These functionals will be sometimes referred to as (nonnormalised) states. https://doi.org/10.5186/aasfm.2019.4439 2010 Mathematics Subject Classification: Primary 46L53; Secondary 81P45.
冯诺依曼代数中保持西格尔熵的映射
我们研究了半有限冯诺依曼代数上留下迹不变量的正规正线性一元映射不改变正规状态(不一定归一化)密度的西格尔熵的情况。处理两种情况:a)对地图没有限制,b)地图代表测量理论中的可重复仪器,这意味着它是幂等的。本文讨论了半有限von Neumann代数下的正线性一元映射作用下Segal熵的不变性问题。Segal熵的概念是由Segal在[9]中为半有限冯·诺伊曼代数引入的,作为冯·诺伊曼熵的直接对应,该熵是由希尔伯特空间上所有有界线性算子的全代数B(H)通过正则迹定义的。然而,在任意半有限冯·诺伊曼代数的情况下,我们有一个正常的半有限忠实的轨迹,而不是规范的轨迹,这两个熵之间存在实质性的差异。也许最基本的问题在于,当B(H)上的正常状态由迹1的正算子(所谓的“密度矩阵”)表示时,在任意半有限冯·诺伊曼代数的情况下,这个“密度矩阵”可以是无界算子。这促使西格尔只考虑“密度矩阵”在代数中的状态。在我们的分析中,我们避免了这个限制,同时我们允许轨迹是半有限和非有限的,后者在处理西格尔熵时也经常被假设。在讨论主要定理的过程中,得到了关于无界可测算子的严格算子凸性或Jensen不等式的一些辅助结果,这些结果本身似乎是有趣的和有一定意义的。1. 设M是作用于希尔伯特空间H上的算子的半有限von Neumann代数,该算子具有正规半有限忠实迹τ,单位1和前偶M∗。用M表示M中的正算子的集合,用M *表示M中正泛函的集合。这些泛函有时被称为(非规范化)状态。https://doi.org/10.5186/aasfm.2019.4439 2010数学学科分类:小学46L53;二次81下岗通知。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Annales Academiæ Scientiarum Fennicæ Mathematica is published by Academia Scientiarum Fennica since 1941. It was founded and edited, until 1974, by P.J. Myrberg. Its editor is Olli Martio. AASF publishes refereed papers in all fields of mathematics with emphasis on analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信