The Symplectic Method in Polar Coordinates for Linear Viscoelastic Materials

W. X. Zhang, Y. Bai
{"title":"The Symplectic Method in Polar Coordinates for Linear Viscoelastic Materials","authors":"W. X. Zhang, Y. Bai","doi":"10.2174/1874088X01509010130","DOIUrl":null,"url":null,"abstract":"In this study, the symplectic method is applied to a two-dimensional annular-sector viscoelastic domain under the polar coordinate system. By applying variable separation approach, all fundamental solutions are derived in analytical form. Further more, using the method of variable substitution, lateral conditions are transformed into finding a particular solution of the governing equations, and the particular solution is derived with the use of eigensolution expansion. In the numerical example, the boundary condition problem is dentally discussed to analyze the stress responds of viscoelastic solids.","PeriodicalId":22791,"journal":{"name":"The Open Materials Science Journal","volume":"52 1","pages":"130-134"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Open Materials Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874088X01509010130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the symplectic method is applied to a two-dimensional annular-sector viscoelastic domain under the polar coordinate system. By applying variable separation approach, all fundamental solutions are derived in analytical form. Further more, using the method of variable substitution, lateral conditions are transformed into finding a particular solution of the governing equations, and the particular solution is derived with the use of eigensolution expansion. In the numerical example, the boundary condition problem is dentally discussed to analyze the stress responds of viscoelastic solids.
线性粘弹性材料的极坐标辛方法
本文将辛方法应用于极坐标系下的二维环形扇形粘弹性域。采用变量分离方法,得到了所有基本解的解析解。利用变量代换的方法,将横向条件转化为求控制方程的特解,并利用特征解展开得到特解。在数值算例中,重点讨论了黏弹性固体应力响应分析的边界条件问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信