F. Jung, J. Haendeler, J. Hoffmann, Agnes Reissner, Elisabeth Dernbach, A. Zeiher, S. Dimmeler
{"title":"Hypoxic Induction of the Hypoxia-Inducible Factor Is Mediated via the Adaptor Protein Shc in Endothelial Cells","authors":"F. Jung, J. Haendeler, J. Hoffmann, Agnes Reissner, Elisabeth Dernbach, A. Zeiher, S. Dimmeler","doi":"10.1161/01.RES.0000024412.24491.CA","DOIUrl":null,"url":null,"abstract":"Tyrosine kinase cascades may play a role in the hypoxic regulation of hypoxia-inducible factor (HIF)-1. We investigated the role of tyrosine kinase phosphorylation and of the Shc/Ras cascade on hypoxic HIF-1 stabilization. Exposure of human umbilical vein endothelial cells to hypoxia results in HIF protein stabilization as early as 10 minutes, with a maximum at 3 hours, and also in Shc tyrosine phosphorylation, with a maximum at 10 minutes. To test whether Shc directly mediates hypoxia-induced HIF stabilization, human umbilical vein endothelial cells were transfected with a dominant-negative Shc mutant (dnShc), resulting in significantly reduced HIF protein levels compared with control. Similar results were obtained with cells transfected with dominant-negative Ras, a known downstream effector of Shc. Hypoxia-induced Ras activity was significantly reduced in cells transfected with dnShc compared with control levels, indicating that Ras indeed acts downstream from Shc. Moreover, cells pretreated with a specific Raf-1 kinase inhibitor, a known downstream effector of Ras, exhibited reduced HIF protein levels. To examine the functional consequences of Shc in hypoxic signaling, HIF-1 ubiquitination, protein stabilization, and endothelial cell migration were assessed. Overexpression of dnShc increased ubiquitination of HIF-1 and reduced the half-life of the protein. Moreover, dnShc, dominant-negative Ras, or the Raf-1 kinase inhibitor significantly inhibited migration under hypoxia. Thus, Shc in concert with Ras and Raf-1 contributes to hypoxia-induced HIF-1&agr; protein stabilization and endothelial cell migration.","PeriodicalId":10314,"journal":{"name":"Circulation Research: Journal of the American Heart Association","volume":"32 1","pages":"38-45"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation Research: Journal of the American Heart Association","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1161/01.RES.0000024412.24491.CA","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52
Abstract
Tyrosine kinase cascades may play a role in the hypoxic regulation of hypoxia-inducible factor (HIF)-1. We investigated the role of tyrosine kinase phosphorylation and of the Shc/Ras cascade on hypoxic HIF-1 stabilization. Exposure of human umbilical vein endothelial cells to hypoxia results in HIF protein stabilization as early as 10 minutes, with a maximum at 3 hours, and also in Shc tyrosine phosphorylation, with a maximum at 10 minutes. To test whether Shc directly mediates hypoxia-induced HIF stabilization, human umbilical vein endothelial cells were transfected with a dominant-negative Shc mutant (dnShc), resulting in significantly reduced HIF protein levels compared with control. Similar results were obtained with cells transfected with dominant-negative Ras, a known downstream effector of Shc. Hypoxia-induced Ras activity was significantly reduced in cells transfected with dnShc compared with control levels, indicating that Ras indeed acts downstream from Shc. Moreover, cells pretreated with a specific Raf-1 kinase inhibitor, a known downstream effector of Ras, exhibited reduced HIF protein levels. To examine the functional consequences of Shc in hypoxic signaling, HIF-1 ubiquitination, protein stabilization, and endothelial cell migration were assessed. Overexpression of dnShc increased ubiquitination of HIF-1 and reduced the half-life of the protein. Moreover, dnShc, dominant-negative Ras, or the Raf-1 kinase inhibitor significantly inhibited migration under hypoxia. Thus, Shc in concert with Ras and Raf-1 contributes to hypoxia-induced HIF-1&agr; protein stabilization and endothelial cell migration.