Nonbacktracking Eigenvalues under Node Removal: X-Centrality and Targeted Immunization

IF 1.9 Q1 MATHEMATICS, APPLIED
Leonardo A. B. Tôrres, Kevin S. Chan, Hanghang Tong, T. Eliassi-Rad
{"title":"Nonbacktracking Eigenvalues under Node Removal: X-Centrality and Targeted Immunization","authors":"Leonardo A. B. Tôrres, Kevin S. Chan, Hanghang Tong, T. Eliassi-Rad","doi":"10.1137/20M1352132","DOIUrl":null,"url":null,"abstract":". The non-backtracking matrix and its eigenvalues have many applications in network science and 5 graph mining, such as node and edge centrality, community detection, length spectrum theory, 6 graph distance, and epidemic and percolation thresholds. In network epidemiology, the reciprocal 7 of the largest eigenvalue of the non-backtracking matrix is a good approximation for the epidemic 8 threshold of certain network dynamics. In this work, we develop techniques that identify which 9 nodes have the largest impact on this leading eigenvalue. We do so by studying the behavior of 10 the spectrum of the non-backtracking matrix after a node is removed from the graph. From this 11 analysis we derive two new centrality measures: X -degree and X-non-backtracking centrality . We 12 perform extensive experimentation with targeted immunization strategies derived from these two 13 centrality measures. Our spectral analysis and centrality measures can be broadly applied, and will 14 be of interest to both theorists and practitioners alike. the perturbation of quadratic eigenvalue problems, with applications to the NB- eigenvalues of the stochastic block","PeriodicalId":74797,"journal":{"name":"SIAM journal on mathematics of data science","volume":"31 1","pages":"656-675"},"PeriodicalIF":1.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM journal on mathematics of data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/20M1352132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 23

Abstract

. The non-backtracking matrix and its eigenvalues have many applications in network science and 5 graph mining, such as node and edge centrality, community detection, length spectrum theory, 6 graph distance, and epidemic and percolation thresholds. In network epidemiology, the reciprocal 7 of the largest eigenvalue of the non-backtracking matrix is a good approximation for the epidemic 8 threshold of certain network dynamics. In this work, we develop techniques that identify which 9 nodes have the largest impact on this leading eigenvalue. We do so by studying the behavior of 10 the spectrum of the non-backtracking matrix after a node is removed from the graph. From this 11 analysis we derive two new centrality measures: X -degree and X-non-backtracking centrality . We 12 perform extensive experimentation with targeted immunization strategies derived from these two 13 centrality measures. Our spectral analysis and centrality measures can be broadly applied, and will 14 be of interest to both theorists and practitioners alike. the perturbation of quadratic eigenvalue problems, with applications to the NB- eigenvalues of the stochastic block
节点去除下的非回溯特征值:x中心性和靶向免疫
. 非回溯矩阵及其特征值在网络科学和5图挖掘中有许多应用,如节点和边缘中心性、社区检测、长度谱理论、6图距离、流行和渗透阈值。在网络流行病学中,非回溯矩阵的最大特征值的倒数7是对某些网络动力学的流行阈值的一个很好的逼近。在这项工作中,我们开发了识别哪9个节点对这个主要特征值影响最大的技术。我们通过研究从图中删除一个节点后非回溯矩阵谱的行为来做到这一点。从这个分析中,我们得到了两个新的中心性度量:X度中心性和X非回溯中心性。我们对基于这两种中心性措施的靶向免疫策略进行了广泛的实验。我们的光谱分析和中心性测量可以广泛应用,并将引起理论家和实践者的兴趣。二次特征值问题的摄动,并应用于随机块的NB-特征值
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信