Performance vs complexity trade-offs for Markovian networked jump estimators

D. Dolz, D. Quevedo, Ignacio Peñarrocha-Alós, R. Sanchis
{"title":"Performance vs complexity trade-offs for Markovian networked jump estimators","authors":"D. Dolz, D. Quevedo, Ignacio Peñarrocha-Alós, R. Sanchis","doi":"10.3182/20140824-6-ZA-1003.00632","DOIUrl":null,"url":null,"abstract":"This paper addresses the design of a state observer for networked systems with random delays and dropouts. The model of plant and network covers the cases of multiple sensors, out-of-sequence and buffered measurements. The measurement outcomes over a finite interval model the network measurement reception scenarios, which follow a Markov distribution. We present a tractable optimization problem to precalculate off-line a finite set of gains of jump observers. The proposed procedure allows us to trade the complexity of the observer implementation for achieved performance. Several examples illustrate that the on-line computational cost of the observer implementation is lower than that of the Kalman filter, whilst the performance is similar.","PeriodicalId":13260,"journal":{"name":"IFAC Proceedings Volumes","volume":"15 1","pages":"7412-7417"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Proceedings Volumes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3182/20140824-6-ZA-1003.00632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper addresses the design of a state observer for networked systems with random delays and dropouts. The model of plant and network covers the cases of multiple sensors, out-of-sequence and buffered measurements. The measurement outcomes over a finite interval model the network measurement reception scenarios, which follow a Markov distribution. We present a tractable optimization problem to precalculate off-line a finite set of gains of jump observers. The proposed procedure allows us to trade the complexity of the observer implementation for achieved performance. Several examples illustrate that the on-line computational cost of the observer implementation is lower than that of the Kalman filter, whilst the performance is similar.
马尔可夫网络跳跃估计器的性能与复杂性权衡
本文研究了具有随机延迟和丢失的网络系统的状态观测器的设计。工厂和网络的模型涵盖了多传感器、乱序和缓冲测量的情况。在有限区间内的测量结果模拟了网络测量接收场景,该场景遵循马尔可夫分布。我们提出了一个易于处理的优化问题,用于离线预计算跳跃观测器的有限增益集。所建议的过程允许我们用观察器实现的复杂性来换取获得的性能。几个实例表明,该观测器实现的在线计算量比卡尔曼滤波器低,而性能相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信