{"title":"Phase transitions of McKean–Vlasov processes in double-wells landscape","authors":"J. Tugaut","doi":"10.1080/17442508.2013.775287","DOIUrl":null,"url":null,"abstract":"The aim of this work is to establish the results for a particular class of inhomogeneous processes, the McKean–Vlasov diffusions. Such diffusions correspond to the hydrodynamical limit of an interacting particle system. In convex landscapes, existence and uniqueness of the invariant probability is a well-known result. However, previous results state the nonuniqueness of the invariant probabilities under nonconvexity assumptions. Here, we prove that there exists a phase transition. Below a critical value, there are exactly three invariant probabilities and above another critical value, there is exactly one. Under simple assumptions, these critical values coincide and it is characterized by a simple implicit equation. We also investigate other cases in which phase transitions occur. Finally, we provide numerical estimations of the critical values.","PeriodicalId":49269,"journal":{"name":"Stochastics-An International Journal of Probability and Stochastic Processes","volume":"2 1","pages":"257 - 284"},"PeriodicalIF":0.8000,"publicationDate":"2014-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics-An International Journal of Probability and Stochastic Processes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17442508.2013.775287","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 63
Abstract
The aim of this work is to establish the results for a particular class of inhomogeneous processes, the McKean–Vlasov diffusions. Such diffusions correspond to the hydrodynamical limit of an interacting particle system. In convex landscapes, existence and uniqueness of the invariant probability is a well-known result. However, previous results state the nonuniqueness of the invariant probabilities under nonconvexity assumptions. Here, we prove that there exists a phase transition. Below a critical value, there are exactly three invariant probabilities and above another critical value, there is exactly one. Under simple assumptions, these critical values coincide and it is characterized by a simple implicit equation. We also investigate other cases in which phase transitions occur. Finally, we provide numerical estimations of the critical values.
期刊介绍:
Stochastics: An International Journal of Probability and Stochastic Processes is a world-leading journal publishing research concerned with stochastic processes and their applications in the modelling, analysis and optimization of stochastic systems, i.e. processes characterized both by temporal or spatial evolution and by the presence of random effects.
Articles are published dealing with all aspects of stochastic systems analysis, characterization problems, stochastic modelling and identification, optimization, filtering and control and with related questions in the theory of stochastic processes. The journal also solicits papers dealing with significant applications of stochastic process theory to problems in engineering systems, the physical and life sciences, economics and other areas. Proposals for special issues in cutting-edge areas are welcome and should be directed to the Editor-in-Chief who will review accordingly.
In recent years there has been a growing interaction between current research in probability theory and problems in stochastic systems. The objective of Stochastics is to encourage this trend, promoting an awareness of the latest theoretical developments on the one hand and of mathematical problems arising in applications on the other.