Phase transitions of McKean–Vlasov processes in double-wells landscape

IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED
J. Tugaut
{"title":"Phase transitions of McKean–Vlasov processes in double-wells landscape","authors":"J. Tugaut","doi":"10.1080/17442508.2013.775287","DOIUrl":null,"url":null,"abstract":"The aim of this work is to establish the results for a particular class of inhomogeneous processes, the McKean–Vlasov diffusions. Such diffusions correspond to the hydrodynamical limit of an interacting particle system. In convex landscapes, existence and uniqueness of the invariant probability is a well-known result. However, previous results state the nonuniqueness of the invariant probabilities under nonconvexity assumptions. Here, we prove that there exists a phase transition. Below a critical value, there are exactly three invariant probabilities and above another critical value, there is exactly one. Under simple assumptions, these critical values coincide and it is characterized by a simple implicit equation. We also investigate other cases in which phase transitions occur. Finally, we provide numerical estimations of the critical values.","PeriodicalId":49269,"journal":{"name":"Stochastics-An International Journal of Probability and Stochastic Processes","volume":"2 1","pages":"257 - 284"},"PeriodicalIF":0.8000,"publicationDate":"2014-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics-An International Journal of Probability and Stochastic Processes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17442508.2013.775287","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 63

Abstract

The aim of this work is to establish the results for a particular class of inhomogeneous processes, the McKean–Vlasov diffusions. Such diffusions correspond to the hydrodynamical limit of an interacting particle system. In convex landscapes, existence and uniqueness of the invariant probability is a well-known result. However, previous results state the nonuniqueness of the invariant probabilities under nonconvexity assumptions. Here, we prove that there exists a phase transition. Below a critical value, there are exactly three invariant probabilities and above another critical value, there is exactly one. Under simple assumptions, these critical values coincide and it is characterized by a simple implicit equation. We also investigate other cases in which phase transitions occur. Finally, we provide numerical estimations of the critical values.
双井景观中McKean-Vlasov过程的相变
这项工作的目的是建立一类特殊的非均匀过程的结果,McKean-Vlasov扩散。这种扩散对应于相互作用粒子系统的流体动力学极限。在凸景观中,不变概率的存在唯一性是一个众所周知的结果。然而,先前的结果表明在非凸性假设下不变概率的非唯一性。在这里,我们证明了相变的存在。在一个临界值以下,恰好有三个不变概率,在另一个临界值以上,恰好有一个不变概率。在简单的假设下,这些临界值重合,用一个简单的隐式方程来表征。我们还研究了发生相变的其他情况。最后,我们给出了临界值的数值估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
42
审稿时长
>12 weeks
期刊介绍: Stochastics: An International Journal of Probability and Stochastic Processes is a world-leading journal publishing research concerned with stochastic processes and their applications in the modelling, analysis and optimization of stochastic systems, i.e. processes characterized both by temporal or spatial evolution and by the presence of random effects. Articles are published dealing with all aspects of stochastic systems analysis, characterization problems, stochastic modelling and identification, optimization, filtering and control and with related questions in the theory of stochastic processes. The journal also solicits papers dealing with significant applications of stochastic process theory to problems in engineering systems, the physical and life sciences, economics and other areas. Proposals for special issues in cutting-edge areas are welcome and should be directed to the Editor-in-Chief who will review accordingly. In recent years there has been a growing interaction between current research in probability theory and problems in stochastic systems. The objective of Stochastics is to encourage this trend, promoting an awareness of the latest theoretical developments on the one hand and of mathematical problems arising in applications on the other.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信