{"title":"CO2 sequestration using a novel Belt Conveyor Reactor with rotating sieve trays compared with Airlift Bubble Column as photobioreactors","authors":"","doi":"10.1016/j.jksues.2021.12.007","DOIUrl":null,"url":null,"abstract":"<div><p>The present work aims to evaluate the performance of a novel three-phase reactor Belt Conveyor Reactor BCR (with rotating sieve trays patent GB2567340B) as a photobioreactor compared with a traditional Airlift Bubble Column ALR, both influenced by the flow of the gas. <em>Chlorella vulgaris</em> was cultivated in these two photobioreactors using ambient air has a CO<sub>2</sub> concentration of 0.038% with different aeration flowrates 0.145, 0.195, 0.24, and 0.29 vvm (gas volume per minute/liquid volume in the reactor).</p><p>The maximum growth rate achieved on the 14th day of culture was 2.120 and 1.420 g/L for BCR, ALR respectively, with initial biomass concentrations of 0.2 g/L and aeration flow of 0.29 vvm. Moreover, the removal efficiency of carbon dioxide sequestration by the two photobioreactors is 40% for BCR and 25% for ALR. The innovative design succeeded in operational quality of agitation with high gas holdup inside the sieve trays to increase the biomass growth up to 50% higher than in the ALR. The maximum CO<sub>2</sub> fixation for ALR was at about 18% at a specific aeration rate of 0.145 vvm in the bubbly regime. Whereas in the BCR can be reached about 38% with wide range operation condition of airflow rate 0.145–0.24 vvm due to well-distributed liquid due to rotating trays, and good gas–liquid mass transfer surface area.</p></div>","PeriodicalId":35558,"journal":{"name":"Journal of King Saud University, Engineering Sciences","volume":"36 5","pages":"Pages 314-319"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1018363921001859/pdfft?md5=d2fe7427ec1c649e9b3a78e2a3b76ed2&pid=1-s2.0-S1018363921001859-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of King Saud University, Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1018363921001859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The present work aims to evaluate the performance of a novel three-phase reactor Belt Conveyor Reactor BCR (with rotating sieve trays patent GB2567340B) as a photobioreactor compared with a traditional Airlift Bubble Column ALR, both influenced by the flow of the gas. Chlorella vulgaris was cultivated in these two photobioreactors using ambient air has a CO2 concentration of 0.038% with different aeration flowrates 0.145, 0.195, 0.24, and 0.29 vvm (gas volume per minute/liquid volume in the reactor).
The maximum growth rate achieved on the 14th day of culture was 2.120 and 1.420 g/L for BCR, ALR respectively, with initial biomass concentrations of 0.2 g/L and aeration flow of 0.29 vvm. Moreover, the removal efficiency of carbon dioxide sequestration by the two photobioreactors is 40% for BCR and 25% for ALR. The innovative design succeeded in operational quality of agitation with high gas holdup inside the sieve trays to increase the biomass growth up to 50% higher than in the ALR. The maximum CO2 fixation for ALR was at about 18% at a specific aeration rate of 0.145 vvm in the bubbly regime. Whereas in the BCR can be reached about 38% with wide range operation condition of airflow rate 0.145–0.24 vvm due to well-distributed liquid due to rotating trays, and good gas–liquid mass transfer surface area.
期刊介绍:
Journal of King Saud University - Engineering Sciences (JKSUES) is a peer-reviewed journal published quarterly. It is hosted and published by Elsevier B.V. on behalf of King Saud University. JKSUES is devoted to a wide range of sub-fields in the Engineering Sciences and JKSUES welcome articles of interdisciplinary nature.