Estimating Phenotypic Characteristics of Tuberculosis Bacteria

IF 0.4 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
D. Sloan, E. Dombay, W. Sabiiti, B. Mtafya, Ognjen Arandelovic, Marios Zachariou
{"title":"Estimating Phenotypic Characteristics of Tuberculosis Bacteria","authors":"D. Sloan, E. Dombay, W. Sabiiti, B. Mtafya, Ognjen Arandelovic, Marios Zachariou","doi":"10.1145/3555776.3578609","DOIUrl":null,"url":null,"abstract":"Microscopy analysis of sputum images for bacilli screening is a common method used for both diagnosis and therapy monitoring of tuberculosis (TB). Nonetheless, it is a challenging procedure, since sputum examination is time-consuming and needs highly competent personnel to provide accurate results which are important for clinical decision-making. In addition, manual fluorescence microscopy examination of sputum samples for tuberculosis diagnosis and treatment monitoring is a subjective operation. In this work, we automate the process of examining fields of view (FOVs) of TB bacteria in order to determine the lipid content, and bacterial length and width. We propose a modified version of the UNet model to rapidly localise potential bacteria inside a FOV. We introduce a novel method that uses Fourier descriptors to exclude contours that do not belong to the class of bacteria, hence minimising the amount of false positives. Finally, we propose a new feature as a means of extracting a representation fed into a support vector multi-regressor in order to estimate the length and width of each bacterium. Using a real-world data corpus, the proposed method i) outperformed previous methods, and ii) estimated the cell length and width with a root mean square error of less than 0.01%.","PeriodicalId":42971,"journal":{"name":"Applied Computing Review","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3555776.3578609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Microscopy analysis of sputum images for bacilli screening is a common method used for both diagnosis and therapy monitoring of tuberculosis (TB). Nonetheless, it is a challenging procedure, since sputum examination is time-consuming and needs highly competent personnel to provide accurate results which are important for clinical decision-making. In addition, manual fluorescence microscopy examination of sputum samples for tuberculosis diagnosis and treatment monitoring is a subjective operation. In this work, we automate the process of examining fields of view (FOVs) of TB bacteria in order to determine the lipid content, and bacterial length and width. We propose a modified version of the UNet model to rapidly localise potential bacteria inside a FOV. We introduce a novel method that uses Fourier descriptors to exclude contours that do not belong to the class of bacteria, hence minimising the amount of false positives. Finally, we propose a new feature as a means of extracting a representation fed into a support vector multi-regressor in order to estimate the length and width of each bacterium. Using a real-world data corpus, the proposed method i) outperformed previous methods, and ii) estimated the cell length and width with a root mean square error of less than 0.01%.
估计结核杆菌的表型特征
痰图像显微镜分析用于杆菌筛查是结核病(TB)诊断和治疗监测的常用方法。然而,这是一个具有挑战性的过程,因为痰液检查耗时,需要高素质的人员提供准确的结果,这对临床决策很重要。此外,人工荧光显微镜检查痰样进行肺结核诊断和治疗监测是一种主观操作。在这项工作中,我们自动化了检查TB细菌视野(FOVs)的过程,以确定脂质含量,细菌的长度和宽度。我们提出了一个修改版本的UNet模型,以快速定位潜在细菌在视场内。我们引入了一种新的方法,使用傅里叶描述符来排除不属于细菌类的轮廓,从而最大限度地减少误报的数量。最后,我们提出了一种新的特征,作为一种提取表征的手段,该表征被输入到支持向量多回归器中,以估计每个细菌的长度和宽度。使用真实世界的数据语料库,所提出的方法i)优于先前的方法,ii)估计单元长度和宽度的均方根误差小于0.01%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Computing Review
Applied Computing Review COMPUTER SCIENCE, INFORMATION SYSTEMS-
自引率
40.00%
发文量
8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信