Prediksi Curah Hujan Dasarian dengan Metode Vanilla RNN dan LSTM untuk Menentukan Awal Musim Hujan dan Kemarau

Ni Made Meriliana Candra Devi, I. P. A. Bayupati, Ni Kadek Ayu Wirdiani
{"title":"Prediksi Curah Hujan Dasarian dengan Metode Vanilla RNN dan LSTM untuk Menentukan Awal Musim Hujan dan Kemarau","authors":"Ni Made Meriliana Candra Devi, I. P. A. Bayupati, Ni Kadek Ayu Wirdiani","doi":"10.26418/jp.v8i3.56606","DOIUrl":null,"url":null,"abstract":"Indonesia dijuluki sebagai negara agraris dimana perekonomian nasional bergantung pada sektor pertanian. Kualitas pertanian sangat dipengaruhi oleh perubahan iklim. BMKG memperkirakan datangnya musim di Indonesia didasari pada curah hujan dasarian. Curah hujan dasarian merupakan total curah hujan selama sepuluh hari. Curah hujan dasarian diatas 50 mm berturut-turut dalam tiga dasarian maka dasarian pertama akan ditentukan sebagai awal musim hujan. Sedangkan curah hujan dasarian dibawah 50 mm dalam tiga dasarian berturut-turut maka dasarian pertama akan ditentukan sebagai awal musim kemarau. Penelitian ini bertujuan untuk melakukan prediksi curah hujan dasarian untuk menentukan awal musim hujan dan musim kemarau. Metode Vanilla Recurrent Neural Network (Vanilla RNN) dan Long Short-Term Memory (LSTM) merupakan jenis dari jaringan saraf berulang yang baik digunakan dalam pemrosesan data sekuensial. Seleksi fitur (feature selection) dengan metode Backward Elimination dilakukan untuk meningkatkan akurasi dari prediksi. Fitur yang digunakan untuk prediksi curah hujan dasarian yaitu kecepatan angin, suhu udara, kelembaban udara, jarak pandang, dan tekanan udara. Adapun fitur hasil seleksi yaitu kelembaban, tekanan, dan jarak pandang. Hasil penelitian yang diperoleh yaitu metode Vanilla RNN dengan seleksi fitur memperoleh hasil terbaik dengan nilai R-Squared sebesar 0,6139 dan RMSE sebesar 28,4308.","PeriodicalId":31793,"journal":{"name":"JEPIN Jurnal Edukasi dan Penelitian Informatika","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JEPIN Jurnal Edukasi dan Penelitian Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26418/jp.v8i3.56606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Indonesia dijuluki sebagai negara agraris dimana perekonomian nasional bergantung pada sektor pertanian. Kualitas pertanian sangat dipengaruhi oleh perubahan iklim. BMKG memperkirakan datangnya musim di Indonesia didasari pada curah hujan dasarian. Curah hujan dasarian merupakan total curah hujan selama sepuluh hari. Curah hujan dasarian diatas 50 mm berturut-turut dalam tiga dasarian maka dasarian pertama akan ditentukan sebagai awal musim hujan. Sedangkan curah hujan dasarian dibawah 50 mm dalam tiga dasarian berturut-turut maka dasarian pertama akan ditentukan sebagai awal musim kemarau. Penelitian ini bertujuan untuk melakukan prediksi curah hujan dasarian untuk menentukan awal musim hujan dan musim kemarau. Metode Vanilla Recurrent Neural Network (Vanilla RNN) dan Long Short-Term Memory (LSTM) merupakan jenis dari jaringan saraf berulang yang baik digunakan dalam pemrosesan data sekuensial. Seleksi fitur (feature selection) dengan metode Backward Elimination dilakukan untuk meningkatkan akurasi dari prediksi. Fitur yang digunakan untuk prediksi curah hujan dasarian yaitu kecepatan angin, suhu udara, kelembaban udara, jarak pandang, dan tekanan udara. Adapun fitur hasil seleksi yaitu kelembaban, tekanan, dan jarak pandang. Hasil penelitian yang diperoleh yaitu metode Vanilla RNN dengan seleksi fitur memperoleh hasil terbaik dengan nilai R-Squared sebesar 0,6139 dan RMSE sebesar 28,4308.
用香草RNN和LSTM方法对达萨里安降雨的预测,以确定雨季和旱季的开始
印度尼西亚被称为农业国家,国民经济依赖农业部门。农业的质量受到气候变化的影响。BMKG预测印尼的季节性到来是基于dasarian降雨量。达沙林降水量为10天。连续三次达至50毫米的降雨量将确定第一次达至雨季的开始。如果连续三次达至50毫米的降雨量较低,那么第一次达至将确定为旱季的开始。本研究的目标是对达斯提亚降水的预测,以确定雨季和旱季的开始。香草神经网络(香草RNN)和Long Short-Term内存(LSTM)是一种在序列数据处理中使用的重复神经网络。功能选择与反消方法进行,以提高预测的准确性。用于预测气压、空气温度、空气湿度、能见度和气压等因素的特点。至于选择的功能,即湿度、压力和能见度。香草RNN的研究结果显示,r - squed分数为0.6139,RMSE为284308。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
1
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信