Feature Transformation for Corporate Tax Default Prediction: Application of Machine Learning Approaches

Mohammad Zoynul Abedin, M. Hassan, Md. Imran Khan, I. Julio
{"title":"Feature Transformation for Corporate Tax Default Prediction: Application of Machine Learning Approaches","authors":"Mohammad Zoynul Abedin, M. Hassan, Md. Imran Khan, I. Julio","doi":"10.1142/S0217595921400170","DOIUrl":null,"url":null,"abstract":"Applications of machine learning (ML) and data science have extended significantly into contemporary accounting and finance. Yet, the prediction and analysis of taxpayers’ status are relatively untapped to date. Moreover, this paper focuses on the combination of feature transformation as a novel domain of research for corporate firms’ tax status prediction with the applicability of ML approaches. The paper also applies a tax payment dataset of Finish limited liability firms with failed and non-failed tax information. Seven different ML approaches train across four datasets, transformed to non-transformed, that effectively discriminate the non-default tax firms from their default counterparts. The findings advocate tax administration to choose the single best ML approach and feature transformation method for the execution purpose.","PeriodicalId":8478,"journal":{"name":"Asia Pac. J. Oper. Res.","volume":"128 1","pages":"2140017:1-2140017:26"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia Pac. J. Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0217595921400170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Applications of machine learning (ML) and data science have extended significantly into contemporary accounting and finance. Yet, the prediction and analysis of taxpayers’ status are relatively untapped to date. Moreover, this paper focuses on the combination of feature transformation as a novel domain of research for corporate firms’ tax status prediction with the applicability of ML approaches. The paper also applies a tax payment dataset of Finish limited liability firms with failed and non-failed tax information. Seven different ML approaches train across four datasets, transformed to non-transformed, that effectively discriminate the non-default tax firms from their default counterparts. The findings advocate tax administration to choose the single best ML approach and feature transformation method for the execution purpose.
企业税违约预测的特征转换:机器学习方法的应用
机器学习(ML)和数据科学的应用已经显著扩展到当代会计和金融领域。然而,目前对纳税人身份的预测和分析相对尚未开发。此外,本文重点研究了特征变换作为企业税收状况预测的一个新研究领域与ML方法的适用性的结合。本文还应用了芬兰有限责任公司的纳税数据集,包括失败和非失败的税收信息。七种不同的机器学习方法在四个数据集上进行训练,从转换到非转换,有效地区分了非违约的税务公司和默认的税务公司。研究结果建议税务管理选择单一的最佳ML方法和特征转换方法来执行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信