A 1.32 TOPS/W Energy Efficient Deep Neural Network Learning Processor with Direct Feedback Alignment based Heterogeneous Core Architecture

Donghyeon Han, Jinsu Lee, Jinmook Lee, H. Yoo
{"title":"A 1.32 TOPS/W Energy Efficient Deep Neural Network Learning Processor with Direct Feedback Alignment based Heterogeneous Core Architecture","authors":"Donghyeon Han, Jinsu Lee, Jinmook Lee, H. Yoo","doi":"10.23919/VLSIC.2019.8778006","DOIUrl":null,"url":null,"abstract":"An energy efficient deep neural network (DNN) learning processor is proposed using direct feedback alignment (DFA). The proposed processor achieves $2.2 \\times$ faster learning speed compared with the previous learning processors by the pipelined DFA (PDFA). In order to enhance the energy efficiency by 38.7%, the heterogeneous learning core (LC) architecture is optimized with the 11-stage pipeline data-path. Furthermore, direct error propagation core (DEPC) utilizes random number generators (RNG) to remove external memory access (EMA) caused by error propagation (EP) and improve the energy efficiency by 19.9%. The proposed PDFA based learning processor is evaluated on the object tracking (OT) application, and as a result, it shows 34.4 frames-per-second (FPS) throughput with 1.32 TOPS/W energy efficiency.","PeriodicalId":6707,"journal":{"name":"2019 Symposium on VLSI Circuits","volume":"19 1","pages":"C304-C305"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIC.2019.8778006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

An energy efficient deep neural network (DNN) learning processor is proposed using direct feedback alignment (DFA). The proposed processor achieves $2.2 \times$ faster learning speed compared with the previous learning processors by the pipelined DFA (PDFA). In order to enhance the energy efficiency by 38.7%, the heterogeneous learning core (LC) architecture is optimized with the 11-stage pipeline data-path. Furthermore, direct error propagation core (DEPC) utilizes random number generators (RNG) to remove external memory access (EMA) caused by error propagation (EP) and improve the energy efficiency by 19.9%. The proposed PDFA based learning processor is evaluated on the object tracking (OT) application, and as a result, it shows 34.4 frames-per-second (FPS) throughput with 1.32 TOPS/W energy efficiency.
基于异构核心结构的1.32 TOPS/W高能效深度神经网络学习处理器
提出了一种基于直接反馈对齐(DFA)的高能效深度神经网络(DNN)学习处理器。采用流水线DFA (PDFA)学习处理器的学习速度比以往的学习处理器快2.2倍。此外,直接错误传播核心(DEPC)利用随机数生成器(RNG)消除了由错误传播(EP)引起的外部内存访问(EMA),提高了19.9%的能源效率。在目标跟踪(OT)应用中对所提出的基于PDFA的学习处理器进行了评估,结果表明,该处理器具有34.4帧/秒(FPS)的吞吐量和1.32 TOPS/W的能效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信