Clustering Commodity Markets in Space and Time: Clarifying Returns, Volatility, and Trading Regimes Through Unsupervised Machine Learning

Mutual Funds Pub Date : 2021-02-23 DOI:10.2139/ssrn.3791138
J. Chen, M. Rehman, X. Vo
{"title":"Clustering Commodity Markets in Space and Time: Clarifying Returns, Volatility, and Trading Regimes Through Unsupervised Machine Learning","authors":"J. Chen, M. Rehman, X. Vo","doi":"10.2139/ssrn.3791138","DOIUrl":null,"url":null,"abstract":"Unsupervised machine learning can interpret logarithmic returns and conditional volatility in commodity markets. k-means and hierarchical clustering can generate a financial ontology of markets for fuels, precious and base metals, and agricultural commodities. Manifold learning methods such as multidimensional scaling (MDS) and t-distributed stochastic neighbor embedding (t-SNE) enable the visualization of comovement and other financial relationships in three dimensions. Different methods of unsupervised learning excel at different tasks. k-means clustering based on logarithmic returns works well with MDS to classify commodities and to create a spatial ontology of commodities trading, A strikingly different application involves k-means clustering of the matrix transpose, such that conditional volatility is evaluated by trading date rather than by commodity. This approach can isolate the two most calamitous temporal regimes of the past two decades: the global financial crisis of 2008-09 and the immediate reaction to the Covid-19 pandemic. Temporal clustering of trading days, unlike the corresponding spatial task of clustering commodities, is better visualized through t-SNE than through MDS.","PeriodicalId":18891,"journal":{"name":"Mutual Funds","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutual Funds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3791138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Unsupervised machine learning can interpret logarithmic returns and conditional volatility in commodity markets. k-means and hierarchical clustering can generate a financial ontology of markets for fuels, precious and base metals, and agricultural commodities. Manifold learning methods such as multidimensional scaling (MDS) and t-distributed stochastic neighbor embedding (t-SNE) enable the visualization of comovement and other financial relationships in three dimensions. Different methods of unsupervised learning excel at different tasks. k-means clustering based on logarithmic returns works well with MDS to classify commodities and to create a spatial ontology of commodities trading, A strikingly different application involves k-means clustering of the matrix transpose, such that conditional volatility is evaluated by trading date rather than by commodity. This approach can isolate the two most calamitous temporal regimes of the past two decades: the global financial crisis of 2008-09 and the immediate reaction to the Covid-19 pandemic. Temporal clustering of trading days, unlike the corresponding spatial task of clustering commodities, is better visualized through t-SNE than through MDS.
在空间和时间上聚类商品市场:通过无监督机器学习澄清收益、波动性和交易制度
无监督机器学习可以解释商品市场的对数回报和条件波动。k均值和分层聚类可以生成燃料、贵金属和贱金属以及农产品市场的金融本体。流形学习方法,如多维尺度(MDS)和t分布随机邻居嵌入(t-SNE),可以在三维上可视化运动和其他金融关系。不同的无监督学习方法适用于不同的任务。基于对数回报的k-means聚类可以很好地与MDS一起对商品进行分类,并创建商品交易的空间本体。另一种截然不同的应用涉及矩阵转置的k-means聚类,这样就可以通过交易日期而不是商品来评估条件波动。这种方法可以隔离过去二十年来两个最具灾难性的临时制度:2008-09年的全球金融危机和对Covid-19大流行的直接反应。交易日的时间聚类与相应的商品聚类的空间任务不同,通过t-SNE比通过MDS可以更好地可视化交易日的时间聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信