Weighted Least Square - Support Vector Machine

Cuong Nguyen, Phung Huynh
{"title":"Weighted Least Square - Support Vector Machine","authors":"Cuong Nguyen, Phung Huynh","doi":"10.1109/RIVF51545.2021.9642114","DOIUrl":null,"url":null,"abstract":"In binary classification problems, two classes of data seem to be different from each other. It is expected to be more complicated due to the clusters in each class also tend to be different. Traditional algorithms as Support Vector Machine (SVM), Twin Support Vector Machine (TSVM), or Least Square Twin Support Vector Machine (LSTSVM) cannot sufficiently exploit structural information with cluster granularity of the data, cause limitation in the ability to detect data trends. Structural Twin Support Vector Machine (S-TSVM) sufficiently exploits structural information with cluster granularity for learning a represented hyperplane. Therefore, the ability to describe the data of S-TSVM is better than that of TSVM and LSTSVM. However, for the datasets where each class consists of clusters of different trends, the S-TSVM’s ability to describe data seems restricted. Besides, the training time of S-TSVM has not been improved compared to TSVM. This paper proposes a new Weighted Least Square - Support Vector Machine (called WLS-SVM) for binary classification problems with a clusters-vs-class strategy. Experimental results show that WLS-SVM could describe the tendency of the distribution of cluster information. Furthermore, the WLS-SVM training time is faster than that of S-TSVM and TSVM, and the WLS-SVM accuracy is better than LSTSVM and TSVM in most cases.","PeriodicalId":6860,"journal":{"name":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","volume":"196 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIVF51545.2021.9642114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In binary classification problems, two classes of data seem to be different from each other. It is expected to be more complicated due to the clusters in each class also tend to be different. Traditional algorithms as Support Vector Machine (SVM), Twin Support Vector Machine (TSVM), or Least Square Twin Support Vector Machine (LSTSVM) cannot sufficiently exploit structural information with cluster granularity of the data, cause limitation in the ability to detect data trends. Structural Twin Support Vector Machine (S-TSVM) sufficiently exploits structural information with cluster granularity for learning a represented hyperplane. Therefore, the ability to describe the data of S-TSVM is better than that of TSVM and LSTSVM. However, for the datasets where each class consists of clusters of different trends, the S-TSVM’s ability to describe data seems restricted. Besides, the training time of S-TSVM has not been improved compared to TSVM. This paper proposes a new Weighted Least Square - Support Vector Machine (called WLS-SVM) for binary classification problems with a clusters-vs-class strategy. Experimental results show that WLS-SVM could describe the tendency of the distribution of cluster information. Furthermore, the WLS-SVM training time is faster than that of S-TSVM and TSVM, and the WLS-SVM accuracy is better than LSTSVM and TSVM in most cases.
加权最小二乘-支持向量机
在二元分类问题中,两类数据似乎彼此不同。由于每个类中的集群也往往是不同的,因此预计会更加复杂。传统的支持向量机(SVM)、双支持向量机(TSVM)和最小二乘双支持向量机(LSTSVM)等算法不能充分利用数据簇粒度的结构信息,导致检测数据趋势的能力受到限制。结构双支持向量机(S-TSVM)充分利用具有聚类粒度的结构信息来学习表征的超平面。因此,S-TSVM对数据的描述能力优于TSVM和LSTSVM。然而,对于每一类由不同趋势的集群组成的数据集,S-TSVM描述数据的能力似乎受到限制。此外,S-TSVM的训练时间与TSVM相比并没有提高。本文提出了一种新的加权最小二乘支持向量机(WLS-SVM),用于聚类对类的二值分类问题。实验结果表明,WLS-SVM能很好地描述聚类信息的分布趋势。此外,WLS-SVM的训练时间比S-TSVM和TSVM快,在大多数情况下,WLS-SVM的准确率优于LSTSVM和TSVM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信