{"title":"Hardware-enhanced distributed access enforcement for role-based access control","authors":"Gedare Bloom, R. Simha","doi":"10.1145/2613087.2613096","DOIUrl":null,"url":null,"abstract":"The protection of information in enterprise and cloud platforms is growing more important and complex with increasing numbers of users who need to access resources with distinct permissions. Role-based access control (RBAC) eases administrative complexity for large-scale access control, while a client-server model can ease performance bottlenecks by distributing access enforcement across multiple servers that consult the centralized access decision policy server as needed. In this paper, we propose a new approach to access enforcement using an existing associative array hardware data structure (HWDS) to cache authorizations in a distributed system using RBAC. This HWDS approach uses hardware that has previous been demonstrated as useful for several application domains including access control, network packet routing, and generic comparison-based integer search algorithms. We reproduce experiments from prior work on distributed access enforcement for RBAC systems, and we design and conduct new experiments to evaluate HWDS-based access enforcement. Experimental data show the HWDS cuts session initiation time by about a third compared to existing solutions, while achieving similar performance to authorize access requests. These results suggest that distributed systems using RBAC could use HWDS-based access enforcement to increase session throughput or to decrease the number of access enforcement servers without losing performance.","PeriodicalId":74509,"journal":{"name":"Proceedings of the ... ACM symposium on access control models and technologies. ACM Symposium on Access Control Models and Technologies","volume":"12 1","pages":"5-16"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM symposium on access control models and technologies. ACM Symposium on Access Control Models and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2613087.2613096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The protection of information in enterprise and cloud platforms is growing more important and complex with increasing numbers of users who need to access resources with distinct permissions. Role-based access control (RBAC) eases administrative complexity for large-scale access control, while a client-server model can ease performance bottlenecks by distributing access enforcement across multiple servers that consult the centralized access decision policy server as needed. In this paper, we propose a new approach to access enforcement using an existing associative array hardware data structure (HWDS) to cache authorizations in a distributed system using RBAC. This HWDS approach uses hardware that has previous been demonstrated as useful for several application domains including access control, network packet routing, and generic comparison-based integer search algorithms. We reproduce experiments from prior work on distributed access enforcement for RBAC systems, and we design and conduct new experiments to evaluate HWDS-based access enforcement. Experimental data show the HWDS cuts session initiation time by about a third compared to existing solutions, while achieving similar performance to authorize access requests. These results suggest that distributed systems using RBAC could use HWDS-based access enforcement to increase session throughput or to decrease the number of access enforcement servers without losing performance.