C. Goel, Chippu Shakir, A. Tesfaye, Kuzhunellil Raghavanpillai Sabu, A. Idhayadhulla, A. Manilal, Melat Woldemariam, Nayana Vijayan, Shabna Shah
{"title":"Antibiofilm Potential of Alpha-Amylase from a Marine Bacterium, Pantoea agglomerans","authors":"C. Goel, Chippu Shakir, A. Tesfaye, Kuzhunellil Raghavanpillai Sabu, A. Idhayadhulla, A. Manilal, Melat Woldemariam, Nayana Vijayan, Shabna Shah","doi":"10.1155/2022/7480382","DOIUrl":null,"url":null,"abstract":"Bacterial biofilms are a big menace to industries and the environment and also in the health sector, accumulation of which is a major challenge. Despite intensive efforts to curb this issue, a definitive solution is yet to be achieved. Enzyme-templated disruption of the extracellular matrix of biofilm and its control and elimination are emerging as an efficient and greener strategy. The study describes the antibiofilm potential of alpha-amylase from the marine microorganism Pantoea agglomerans PCI05, against food-borne pathogens. Amylase exhibited stability in a wide pH range and retained 50% of its activity at temperatures as high as 100°C. Thermal analysis of the enzyme produced showed thermal stability, up to 130°C. From these findings, it can be envisaged that the alpha-amylase produced from P. agglomerans can be used for starch liquefaction; it was also evaluated for antibiofilm activity. Amylase from this marine bacterium was found to efficiently disrupt the preformed biofilms of food-borne pathogens such as Bacillus cereus, Serratia marcescens, Vibrio parahaemolyticus, Listeria monocytogenes, and Salmonella enterica enterica serotype Typhi based on the value of biofilm inhibitory concentrations.","PeriodicalId":22481,"journal":{"name":"The Canadian Journal of Infectious Diseases & Medical Microbiology = Journal Canadien des Maladies Infectieuses et de la Microbiologie Médicale","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Canadian Journal of Infectious Diseases & Medical Microbiology = Journal Canadien des Maladies Infectieuses et de la Microbiologie Médicale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/7480382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Bacterial biofilms are a big menace to industries and the environment and also in the health sector, accumulation of which is a major challenge. Despite intensive efforts to curb this issue, a definitive solution is yet to be achieved. Enzyme-templated disruption of the extracellular matrix of biofilm and its control and elimination are emerging as an efficient and greener strategy. The study describes the antibiofilm potential of alpha-amylase from the marine microorganism Pantoea agglomerans PCI05, against food-borne pathogens. Amylase exhibited stability in a wide pH range and retained 50% of its activity at temperatures as high as 100°C. Thermal analysis of the enzyme produced showed thermal stability, up to 130°C. From these findings, it can be envisaged that the alpha-amylase produced from P. agglomerans can be used for starch liquefaction; it was also evaluated for antibiofilm activity. Amylase from this marine bacterium was found to efficiently disrupt the preformed biofilms of food-borne pathogens such as Bacillus cereus, Serratia marcescens, Vibrio parahaemolyticus, Listeria monocytogenes, and Salmonella enterica enterica serotype Typhi based on the value of biofilm inhibitory concentrations.