Eliminating errors due to position uncertainty in coaxial airline based measurement of material parameters

Q2 Social Sciences
N. Venkatarayalu, C. Yuan
{"title":"Eliminating errors due to position uncertainty in coaxial airline based measurement of material parameters","authors":"N. Venkatarayalu, C. Yuan","doi":"10.1109/PIERS-FALL.2017.8293183","DOIUrl":null,"url":null,"abstract":"The Nicolson-Ross-Weir (NRW) method is a classic technique for the measurement of complex permittivity and permeability of materials at RF and microwave frequencies. The method is based on the measurement of transmission and reflection coefficients of the material under test and subsequently, extracting the material parameters through a non-linear inversion process. The NRW method has a limitation on the thickness of the sample to be less than λ/2. The Stepwise NRW method that relies on seeking the correct branch in the inversion process, overcomes the limitation on the thickness on the sample. Both the methods rely on the reflection and transmission coefficients, which is obtained from two-port S-parameters measurements, by inserting the material under test inside a transmission line. In this work, a coaxial airline is used for the transmission line measurement. The de-embedding of the S-parameters, to obtain the reflection and transmission coefficients, requires the position/location of the sample inside the coaxial airline. This can potentially introduce errors due to position uncertainties. We propose a technique to estimate the position of the material under test inside the coaxial airline that eliminates inaccuracies due to positioning errors in the extraction process. The proposed technique relies on the symmetry of S-parameters to estimate the errors in the position of the material placed inside the coaxial airline. Subsequent de-embedding of S-parameters is performed taking into account the estimated error in the position of the material under test. Measurements and investigations are performed using both the NRW and stepwise NRW techniques illustrating the improvement in the accuracy of the measured material parameters.","PeriodicalId":39469,"journal":{"name":"Advances in Engineering Education","volume":"30 1","pages":"464-467"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Engineering Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIERS-FALL.2017.8293183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

The Nicolson-Ross-Weir (NRW) method is a classic technique for the measurement of complex permittivity and permeability of materials at RF and microwave frequencies. The method is based on the measurement of transmission and reflection coefficients of the material under test and subsequently, extracting the material parameters through a non-linear inversion process. The NRW method has a limitation on the thickness of the sample to be less than λ/2. The Stepwise NRW method that relies on seeking the correct branch in the inversion process, overcomes the limitation on the thickness on the sample. Both the methods rely on the reflection and transmission coefficients, which is obtained from two-port S-parameters measurements, by inserting the material under test inside a transmission line. In this work, a coaxial airline is used for the transmission line measurement. The de-embedding of the S-parameters, to obtain the reflection and transmission coefficients, requires the position/location of the sample inside the coaxial airline. This can potentially introduce errors due to position uncertainties. We propose a technique to estimate the position of the material under test inside the coaxial airline that eliminates inaccuracies due to positioning errors in the extraction process. The proposed technique relies on the symmetry of S-parameters to estimate the errors in the position of the material placed inside the coaxial airline. Subsequent de-embedding of S-parameters is performed taking into account the estimated error in the position of the material under test. Measurements and investigations are performed using both the NRW and stepwise NRW techniques illustrating the improvement in the accuracy of the measured material parameters.
同轴航线材料参数测量中位置不确定误差的消除
Nicolson-Ross-Weir (NRW)法是测量材料在射频和微波频率下复介电常数和磁导率的经典技术。该方法基于测量被测材料的透射和反射系数,然后通过非线性反演过程提取材料参数。NRW法对样品厚度的限制是小于λ/2。逐步NRW方法依靠在反演过程中寻找正确的分支,克服了对样品厚度的限制。这两种方法都依赖于反射系数和透射系数,这是通过将待测材料插入传输线内,通过双端口s参数测量获得的。在这项工作中,传输线测量采用同轴航线。s参数的去嵌入,以获得反射和透射系数,需要样品在同轴航线内的位置/位置。这可能会由于位置不确定性而潜在地引入误差。我们提出了一种技术来估计被测材料在同轴航线内的位置,消除了由于提取过程中的定位误差而导致的不准确性。所提出的技术依赖于s参数的对称性来估计材料放置在同轴航线内的位置误差。考虑到待测材料位置的估计误差,进行s参数的后续去嵌入。使用NRW和逐步NRW技术进行测量和调查,说明了测量材料参数精度的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Engineering Education
Advances in Engineering Education Social Sciences-Education
CiteScore
2.90
自引率
0.00%
发文量
8
期刊介绍: The journal publishes articles on a wide variety of topics related to documented advances in engineering education practice. Topics may include but are not limited to innovations in course and curriculum design, teaching, and assessment both within and outside of the classroom that have led to improved student learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信