Proteome in regrowth cycles of sugarcane: Absence of proteins to tolerate adverse growth conditions may be related to reduced agricultural productivity
G. B. Maranho, R. C. Maranho, M. M. Benez, E. Pilau, C. A. Mangolin, M. F. P. S. Machado
{"title":"Proteome in regrowth cycles of sugarcane: Absence of proteins to tolerate adverse growth conditions may be related to reduced agricultural productivity","authors":"G. B. Maranho, R. C. Maranho, M. M. Benez, E. Pilau, C. A. Mangolin, M. F. P. S. Machado","doi":"10.4025/actasciagron.v45i1.58085","DOIUrl":null,"url":null,"abstract":"One of the main objectives of sugarcane plantations is to increase their longevity without decreasing agricultural productivity. In the present study, we analyzed the proteome of the axillary buds of ‘RB966928’ to investigate possible changes in the number of proteins at different cutting stages. Using tryptic digestion followed by ultra-performance liquid chromatography coupled with high-resolution time-of-flight mass spectrometry, 122 proteins were identified from the proteome of the axillary buds of ‘RB966928’. Of the 122, respectively 97 and 95 proteins were detected at the first and fifth cutting stages, of which 27 and 25 proteins were unique to the respective stage. Proteins that prevent the misfolding of polypeptides generated under stress were exclusively detected at the first cutting stage. Meanwhile, proteins associated with stress responses and disease resistance were exclusively detected at the fifth cutting stage. The present proteomic analysis in the regrowth cycles and axillary bud development of ‘RB966928’ significantly advanced our understanding of the biological processes linked to the reduction of agricultural productivity of sugarcane with the advancement of cutting age. Absence of proteins to tolerate adverse growth conditions at the fifth cutting stage may be related to reduced agricultural productivity, in addition to environmental stress, soil compaction, nutrient availability, cultural practices, and pests or pathogen attacks at different phenological stages of crops.","PeriodicalId":56373,"journal":{"name":"Acta Scientiarum. Agronomy.","volume":"48 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Scientiarum. Agronomy.","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.4025/actasciagron.v45i1.58085","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
One of the main objectives of sugarcane plantations is to increase their longevity without decreasing agricultural productivity. In the present study, we analyzed the proteome of the axillary buds of ‘RB966928’ to investigate possible changes in the number of proteins at different cutting stages. Using tryptic digestion followed by ultra-performance liquid chromatography coupled with high-resolution time-of-flight mass spectrometry, 122 proteins were identified from the proteome of the axillary buds of ‘RB966928’. Of the 122, respectively 97 and 95 proteins were detected at the first and fifth cutting stages, of which 27 and 25 proteins were unique to the respective stage. Proteins that prevent the misfolding of polypeptides generated under stress were exclusively detected at the first cutting stage. Meanwhile, proteins associated with stress responses and disease resistance were exclusively detected at the fifth cutting stage. The present proteomic analysis in the regrowth cycles and axillary bud development of ‘RB966928’ significantly advanced our understanding of the biological processes linked to the reduction of agricultural productivity of sugarcane with the advancement of cutting age. Absence of proteins to tolerate adverse growth conditions at the fifth cutting stage may be related to reduced agricultural productivity, in addition to environmental stress, soil compaction, nutrient availability, cultural practices, and pests or pathogen attacks at different phenological stages of crops.
期刊介绍:
The journal publishes original articles in all areas of Agronomy, including soil sciences, agricultural entomology, soil fertility and manuring, soil physics, physiology of cultivated plants, phytopathology, phyto-health, phytotechny, genesis, morphology and soil classification, management and conservation of soil, integrated management of plant pests, vegetal improvement, agricultural microbiology, agricultural parasitology, production and processing of seeds.