Mathematical simulation of the calendering process for non-Newtonian polymers

IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, COATINGS & FILMS
M. Javed, Sarah Nasir, N. Ali, S. Arshad
{"title":"Mathematical simulation of the calendering process for non-Newtonian polymers","authors":"M. Javed, Sarah Nasir, N. Ali, S. Arshad","doi":"10.1177/87560879211066900","DOIUrl":null,"url":null,"abstract":"This paper mathematically studies calendering with a tangent hyperbolic model to simulate non-Newtonian polymers. The constitutive equations based on Lubrication Approximation Theory (LAT) are first non-dimensionalized and then simplified. The simplified equations describing the flow inside the calender are solved (a) analytically using the perturbation method and (b) numerically using MatLab built-in routine “BVP4c” method. The first case obtains an analytical expression for velocity, pressure gradient, and final sheet thickness with the help of the perturbation method, while BVP4c and Runge-Kutta methods are used to calculate the velocity, pressure, pressure gradient, and mechanical quantities numerically. The power-law index and Weissenberg number influence on pressure, pressure gradient, and velocity profiles of fluid being calendered are shown with graphs. The pressure inside the calender decreases as the power-law index and Weissenberg number increase. The force function and final sheet thickness decreases as the power-law index and Weissenberg number increases.","PeriodicalId":16823,"journal":{"name":"Journal of Plastic Film & Sheeting","volume":"49 1","pages":"369 - 395"},"PeriodicalIF":2.1000,"publicationDate":"2022-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plastic Film & Sheeting","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/87560879211066900","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 3

Abstract

This paper mathematically studies calendering with a tangent hyperbolic model to simulate non-Newtonian polymers. The constitutive equations based on Lubrication Approximation Theory (LAT) are first non-dimensionalized and then simplified. The simplified equations describing the flow inside the calender are solved (a) analytically using the perturbation method and (b) numerically using MatLab built-in routine “BVP4c” method. The first case obtains an analytical expression for velocity, pressure gradient, and final sheet thickness with the help of the perturbation method, while BVP4c and Runge-Kutta methods are used to calculate the velocity, pressure, pressure gradient, and mechanical quantities numerically. The power-law index and Weissenberg number influence on pressure, pressure gradient, and velocity profiles of fluid being calendered are shown with graphs. The pressure inside the calender decreases as the power-law index and Weissenberg number increase. The force function and final sheet thickness decreases as the power-law index and Weissenberg number increases.
非牛顿聚合物压延过程的数学模拟
本文从数学上研究了用正切双曲模型来模拟非牛顿聚合物的压延。首先对基于润滑近似理论(LAT)的本构方程进行无量纲化和简化。描述压延机内部流动的简化方程(a)用摄动法解析求解,(b)用MatLab内置的例程“BVP4c”法数值求解。采用微扰法得到速度、压力梯度和最终板厚的解析表达式,采用BVP4c法和龙格-库塔法对速度、压力、压力梯度和力学量进行数值计算。幂律指数和Weissenberg数对被压延流体的压力、压力梯度和速度分布的影响用图形表示。压延机内部压力随幂律指数和Weissenberg数的增加而减小。随着幂律指数和Weissenberg数的增加,力函数和最终板厚减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Plastic Film & Sheeting
Journal of Plastic Film & Sheeting 工程技术-材料科学:膜
CiteScore
6.00
自引率
16.10%
发文量
33
审稿时长
>12 weeks
期刊介绍: The Journal of Plastic Film and Sheeting improves communication concerning plastic film and sheeting with major emphasis on the propogation of knowledge which will serve to advance the science and technology of these products and thus better serve industry and the ultimate consumer. The journal reports on the wide variety of advances that are rapidly taking place in the technology of plastic film and sheeting. This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信