Small domination-type invariants in random graphs

IF 0.4 Q4 MATHEMATICS, APPLIED
M. Furuya, Tamae Kawasaki
{"title":"Small domination-type invariants in random graphs","authors":"M. Furuya, Tamae Kawasaki","doi":"10.4310/joc.2022.v13.n4.a4","DOIUrl":null,"url":null,"abstract":"For $c\\in \\mathbb{R}^{+}\\cup \\{\\infty \\}$ and a graph $G$, a function $f:V(G)\\rightarrow \\{0,1,c\\}$ is called a $c$-self dominating function of $G$ if for every vertex $u\\in V(G)$, $f(u)\\geq c$ or $\\max\\{f(v):v\\in N_{G}(u)\\}\\geq 1$ where $N_{G}(u)$ is the neighborhood of $u$ in $G$. The minimum weight $w(f)=\\sum _{u\\in V(G)}f(u)$ of a $c$-self dominating function $f$ of $G$ is called the $c$-self domination number of $G$. The $c$-self domination concept is a common generalization of three domination-type invariants; (original) domination, total domination and Roman domination. In this paper, we study a behavior of the $c$-self domination number in random graphs for small $c$.","PeriodicalId":44683,"journal":{"name":"Journal of Combinatorics","volume":"35 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2019-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/joc.2022.v13.n4.a4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

For $c\in \mathbb{R}^{+}\cup \{\infty \}$ and a graph $G$, a function $f:V(G)\rightarrow \{0,1,c\}$ is called a $c$-self dominating function of $G$ if for every vertex $u\in V(G)$, $f(u)\geq c$ or $\max\{f(v):v\in N_{G}(u)\}\geq 1$ where $N_{G}(u)$ is the neighborhood of $u$ in $G$. The minimum weight $w(f)=\sum _{u\in V(G)}f(u)$ of a $c$-self dominating function $f$ of $G$ is called the $c$-self domination number of $G$. The $c$-self domination concept is a common generalization of three domination-type invariants; (original) domination, total domination and Roman domination. In this paper, we study a behavior of the $c$-self domination number in random graphs for small $c$.
随机图中的小支配型不变量
对于$c\in \mathbb{R}^{+}\cup \{\infty \}$和图$G$,函数$f:V(G)\rightarrow \{0,1,c\}$被称为$c$ - $G$的自支配函数,如果对于每个顶点$u\in V(G)$, $f(u)\geq c$或$\max\{f(v):v\in N_{G}(u)\}\geq 1$,其中$N_{G}(u)$是$G$中的$u$的邻域。$G$的$c$ -自支配函数$f$的最小权值$w(f)=\sum _{u\in V(G)}f(u)$称为$G$的$c$ -自支配数。$c$ -自我支配概念是三种支配型不变量的共同概括;(原始)统治,完全统治和罗马统治。本文研究了小$c$随机图中$c$ -自支配数的一种行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Combinatorics
Journal of Combinatorics MATHEMATICS, APPLIED-
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信