{"title":"Embedded mini-Heater design for power loss remote measurement and thermal runaway control on power devices for Accelerated Life Testing","authors":"J. Hernández-Ambato, C. Pace","doi":"10.1109/ETCM.2016.7750864","DOIUrl":null,"url":null,"abstract":"This paper points out to the use of a COTS SAFeFET in the design of an Embedded mini-Heater (EmH) addressed for Accelerated Life Tests (ALTs) on power semiconductor devices. EmH is designed to detect and control the thermal runaway on a device under test (DUT) while thermal and electrical stress are applied. The heating and sensing temperature processes are controlled by discrete PID algorithms running on a microcontroller. As results, EmH can reach a DUT heating temperature of 175°C with a temperature resolution of 0.5°C using a maximum heating power of 10.6W. Even more, due to the small size and low heating power consumption of EmH, loss power dissipation from a single DUT can be measured remotely without any electrical interface connection to detect its degradation during an ALT avoiding to interrupt the electric stress.","PeriodicalId":6480,"journal":{"name":"2016 IEEE Ecuador Technical Chapters Meeting (ETCM)","volume":"59 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Ecuador Technical Chapters Meeting (ETCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETCM.2016.7750864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This paper points out to the use of a COTS SAFeFET in the design of an Embedded mini-Heater (EmH) addressed for Accelerated Life Tests (ALTs) on power semiconductor devices. EmH is designed to detect and control the thermal runaway on a device under test (DUT) while thermal and electrical stress are applied. The heating and sensing temperature processes are controlled by discrete PID algorithms running on a microcontroller. As results, EmH can reach a DUT heating temperature of 175°C with a temperature resolution of 0.5°C using a maximum heating power of 10.6W. Even more, due to the small size and low heating power consumption of EmH, loss power dissipation from a single DUT can be measured remotely without any electrical interface connection to detect its degradation during an ALT avoiding to interrupt the electric stress.