The Fourier-finite-element method for Poisson’s equation in three-dimensional axisymmetric domains with edges: Computing the edge flux intensity functions
{"title":"The Fourier-finite-element method for Poisson’s equation in three-dimensional axisymmetric domains with edges: Computing the edge flux intensity functions","authors":"B. Nkemzi, M. Jung","doi":"10.1515/jnma-2019-0002","DOIUrl":null,"url":null,"abstract":"Abstract In [Nkemzi and Jung, 2013] explicit extraction formulas for the computation of the edge flux intensity functions for the Laplacian at axisymmetric edges are presented. The present paper proposes a new adaptation for the Fourier-finite-element method for efficient numerical treatment of boundary value problems for the Poisson equation in axisymmetric domains Ω̂ ⊂ ℝ3 with edges. The novelty of the method is the use of the explicit extraction formulas for the edge flux intensity functions to define a postprocessing procedure of the finite element solutions of the reduced boundary value problems on the two-dimensional meridian of Ω̂. A priori error estimates show that the postprocessing finite element strategy exhibits optimal rate of convergence on regular meshes. Numerical experiments that validate the theoretical results are presented.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2019-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jnma-2019-0002","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5
Abstract
Abstract In [Nkemzi and Jung, 2013] explicit extraction formulas for the computation of the edge flux intensity functions for the Laplacian at axisymmetric edges are presented. The present paper proposes a new adaptation for the Fourier-finite-element method for efficient numerical treatment of boundary value problems for the Poisson equation in axisymmetric domains Ω̂ ⊂ ℝ3 with edges. The novelty of the method is the use of the explicit extraction formulas for the edge flux intensity functions to define a postprocessing procedure of the finite element solutions of the reduced boundary value problems on the two-dimensional meridian of Ω̂. A priori error estimates show that the postprocessing finite element strategy exhibits optimal rate of convergence on regular meshes. Numerical experiments that validate the theoretical results are presented.
在[Nkemzi and Jung, 2013]中,给出了计算轴对称边缘拉普拉斯函数边缘通量强度函数的显式提取公式。本文提出了一种新的傅里叶-有限元方法的改进,用于有效地数值处理轴对称域上泊松方程的边值问题Ω∧有边的∈3。该方法的新颖之处在于利用边缘通量强度函数的显式提取公式,定义了二维子午线Ω²上的简化边值问题的有限元解的后处理过程。先验误差估计表明,后处理有限元策略在规则网格上具有最优的收敛速度。数值实验验证了理论结果。
期刊介绍:
The Journal of Numerical Mathematics (formerly East-West Journal of Numerical Mathematics) contains high-quality papers featuring contemporary research in all areas of Numerical Mathematics. This includes the development, analysis, and implementation of new and innovative methods in Numerical Linear Algebra, Numerical Analysis, Optimal Control/Optimization, and Scientific Computing. The journal will also publish applications-oriented papers with significant mathematical content in computational fluid dynamics and other areas of computational engineering, finance, and life sciences.