Reusing Simulation Outputs of Repeated Experiments Via Likelihood Ratio Regression

B. Feng, Guangxin Jiang
{"title":"Reusing Simulation Outputs of Repeated Experiments Via Likelihood Ratio Regression","authors":"B. Feng, Guangxin Jiang","doi":"10.1109/WSC48552.2020.9383879","DOIUrl":null,"url":null,"abstract":"Simulation experiments are sometimes conducted periodically, with updated parameters of the stochastic system being modeled. Storing and reusing the past simulation experiment data may be helpful for the current simulation experiment. In this paper, we consider reusing simulation data in repeated experiments to develop high-quality metamodels. Specifically, we propose a generalized least square regression metamodel whose input data include simulation outputs from the current and the past experiments. Moreover, the past simulation outputs are reused via the likelihood ratio method. Asymptotic variance analysis is provided to show the benefits of reusing past simulation data in prediction accuracy, and the numerical results show the effectiveness of the proposed method.","PeriodicalId":6692,"journal":{"name":"2020 Winter Simulation Conference (WSC)","volume":"9 1","pages":"325-336"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC48552.2020.9383879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Simulation experiments are sometimes conducted periodically, with updated parameters of the stochastic system being modeled. Storing and reusing the past simulation experiment data may be helpful for the current simulation experiment. In this paper, we consider reusing simulation data in repeated experiments to develop high-quality metamodels. Specifically, we propose a generalized least square regression metamodel whose input data include simulation outputs from the current and the past experiments. Moreover, the past simulation outputs are reused via the likelihood ratio method. Asymptotic variance analysis is provided to show the benefits of reusing past simulation data in prediction accuracy, and the numerical results show the effectiveness of the proposed method.
基于似然比回归的重复实验模拟结果重用
有时定期进行模拟实验,并对随机系统的参数进行更新建模。对过去的仿真实验数据进行存储和重用,可能有助于当前的仿真实验。在本文中,我们考虑在重复实验中重用仿真数据来开发高质量的元模型。具体来说,我们提出了一个广义最小二乘回归元模型,其输入数据包括当前和过去实验的模拟输出。此外,通过似然比方法重用了过去的模拟输出。通过渐近方差分析,说明了重复利用以往模拟数据对预测精度的好处,数值结果表明了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信