I. Campos, L. González, J. Villodre, María Calera, Jaime Campoy, Nuria Jiménez, C. Plaza, A. Calera
{"title":"Mapping within-field biomass variability: a remote sensing-based approach","authors":"I. Campos, L. González, J. Villodre, María Calera, Jaime Campoy, Nuria Jiménez, C. Plaza, A. Calera","doi":"10.1017/S2040470017000139","DOIUrl":null,"url":null,"abstract":"Biomass production is a diagnosis tool for the evaluation of the effect of climate, crop genomic and management. The differences in biomass accumulation are necessary for the assessment of the fertilization necessities in the strategies for variable nitrogen doses. Remote sensing-based data provide a direct observation of the differences in canopy development across time and space and can be integrated into the physiological basis of crop growth models to provide estimates of biomass production at fine scales. The proposed approach was applied in a wheat field in Albacete, Spain and the results were compared with measurements of aboveground biomass and yield maps obtained by a combined-mounted grain yield monitor.","PeriodicalId":7228,"journal":{"name":"Advances in Animal Biosciences","volume":"18 1","pages":"764-769"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Animal Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S2040470017000139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Biomass production is a diagnosis tool for the evaluation of the effect of climate, crop genomic and management. The differences in biomass accumulation are necessary for the assessment of the fertilization necessities in the strategies for variable nitrogen doses. Remote sensing-based data provide a direct observation of the differences in canopy development across time and space and can be integrated into the physiological basis of crop growth models to provide estimates of biomass production at fine scales. The proposed approach was applied in a wheat field in Albacete, Spain and the results were compared with measurements of aboveground biomass and yield maps obtained by a combined-mounted grain yield monitor.