Zhang Yongkang, Shang Ying, Wang Chen, Zhao Wenan, Li Chang, Cao Bing, Wang Chang
{"title":"Detection and recognition of distributed optical fiber intrusion signal","authors":"Zhang Yongkang, Shang Ying, Wang Chen, Zhao Wenan, Li Chang, Cao Bing, Wang Chang","doi":"10.12086/OEE.2021.200254","DOIUrl":null,"url":null,"abstract":"Distributed acoustic sensing (DAS) technology can detect acoustic or vibration signals with high sensitivity and wide dynamic range by receiving the phase information from coherent Rayleigh scattered light. Linear quanti-zation is used to measure high fidelity restoration of the signals. With the increasing demand of practical applications, the optical fiber intrusion detection field has put forward higher requirements for event location and identification, which is manifested as the accurate classification of intrusion events. Therefore, the combination of distributed acoustic sensing and pattern recognition (PR) technology is a hot research topic at present. This is beneficial to promote the application and development of distributed optical fiber sensing technology. The research progress of the pattern recognition technology applied to distributed optical fiber intrusion detection in recent years is summarized in this paper, which can be used for feature extraction and classification algorithm research progress. In this paper, several feature extraction methods for realizing intrusion event signal recognition and their feature selection difficulties in different application situations are reviewed. Meanwhile, the advantages and disadvantages of specific event recognition algorithm are analyzed and summarized.","PeriodicalId":39552,"journal":{"name":"光电工程","volume":"20 1","pages":"200254"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"光电工程","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12086/OEE.2021.200254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
Distributed acoustic sensing (DAS) technology can detect acoustic or vibration signals with high sensitivity and wide dynamic range by receiving the phase information from coherent Rayleigh scattered light. Linear quanti-zation is used to measure high fidelity restoration of the signals. With the increasing demand of practical applications, the optical fiber intrusion detection field has put forward higher requirements for event location and identification, which is manifested as the accurate classification of intrusion events. Therefore, the combination of distributed acoustic sensing and pattern recognition (PR) technology is a hot research topic at present. This is beneficial to promote the application and development of distributed optical fiber sensing technology. The research progress of the pattern recognition technology applied to distributed optical fiber intrusion detection in recent years is summarized in this paper, which can be used for feature extraction and classification algorithm research progress. In this paper, several feature extraction methods for realizing intrusion event signal recognition and their feature selection difficulties in different application situations are reviewed. Meanwhile, the advantages and disadvantages of specific event recognition algorithm are analyzed and summarized.
光电工程Engineering-Electrical and Electronic Engineering
CiteScore
2.00
自引率
0.00%
发文量
6622
期刊介绍:
Founded in 1974, Opto-Electronic Engineering is an academic journal under the supervision of the Chinese Academy of Sciences and co-sponsored by the Institute of Optoelectronic Technology of the Chinese Academy of Sciences (IOTC) and the Optical Society of China (OSC). It is a core journal in Chinese and a core journal in Chinese science and technology, and it is included in domestic and international databases, such as Scopus, CA, CSCD, CNKI, and Wanfang.
Opto-Electronic Engineering is a peer-reviewed journal with subject areas including not only the basic disciplines of optics and electricity, but also engineering research and engineering applications. Optoelectronic Engineering mainly publishes scientific research progress, original results and reviews in the field of optoelectronics, and publishes related topics for hot issues and frontier subjects.
The main directions of the journal include:
- Optical design and optical engineering
- Photovoltaic technology and applications
- Lasers, optical fibres and communications
- Optical materials and photonic devices
- Optical Signal Processing