Correlation analysis of experimental permittivity data

K. Giese
{"title":"Correlation analysis of experimental permittivity data","authors":"K. Giese","doi":"10.1016/0001-8716(75)80022-8","DOIUrl":null,"url":null,"abstract":"<div><p>The auto-correlation function Φ<em><sub>h,h</sub></em>(<em>r</em>) of the relaxation time distribution function <em>h</em>(<em>r</em>) is obtained from the auto- and cross-correlations of real and imaginary parts of the permittivity by inversion of convolution integrals. If the permittivity data are subject to experimental error, the spectrum of the auto-correlation Φ<em><sub>h,h</sub></em>(<em>r</em>) appears to be most suitable for the determination of the main characteristics of the distribution function <em>h</em>(<em>r</em>). It is necessary to obtain additional information by evaluating the lower order moments of the distribution function.</p></div>","PeriodicalId":100050,"journal":{"name":"Advances in Molecular Relaxation Processes","volume":"7 3","pages":"Pages 157-166"},"PeriodicalIF":0.0000,"publicationDate":"1975-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0001-8716(75)80022-8","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Molecular Relaxation Processes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0001871675800228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The auto-correlation function Φh,h(r) of the relaxation time distribution function h(r) is obtained from the auto- and cross-correlations of real and imaginary parts of the permittivity by inversion of convolution integrals. If the permittivity data are subject to experimental error, the spectrum of the auto-correlation Φh,h(r) appears to be most suitable for the determination of the main characteristics of the distribution function h(r). It is necessary to obtain additional information by evaluating the lower order moments of the distribution function.

实验介电常数数据的相关分析
弛豫时间分布函数h(r)的自相关函数Φh,h(r)是通过卷积积分的反演,由介电常数实部和虚部的自相关和互相关得到的。如果介电常数数据受到实验误差的影响,则自相关谱Φh,h(r)似乎最适合用于确定分布函数h(r)的主要特征。有必要通过计算分布函数的低阶矩来获得附加信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信