{"title":"Analysis of Kohn-Sham Eigenfunctions Using a Convolutional Neural Network in Simulations of the Metal-insulator Transition in Doped Semiconductors.","authors":"Y. Harashima, T. Mano, K. Slevin, T. Ohtsuki","doi":"10.7566/JPSJ.90.094001","DOIUrl":null,"url":null,"abstract":"Machine learning has recently been applied to many problems in condensed matter physics. A common point of many proposals is to save computational cost by training the machine with data from a simple example and then using the machine to make predictions for a more complicated example. Convolutional neural networks (CNN), which are one of the tools of machine learning, have proved to work well for assessing eigenfunctions in disordered systems. Here we apply a CNN to assess Kohn-Sham eigenfunctions obtained in density functional theory (DFT) simulations of the metal-insulator transition of a doped semiconductor. We demonstrate that a CNN that has been trained using eigenfunctions from a simulation of a doped semiconductor that neglects electron spin successfully predicts the critical concentration when presented with eigenfunctions from simulations that include spin.","PeriodicalId":8438,"journal":{"name":"arXiv: Disordered Systems and Neural Networks","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Disordered Systems and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7566/JPSJ.90.094001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Machine learning has recently been applied to many problems in condensed matter physics. A common point of many proposals is to save computational cost by training the machine with data from a simple example and then using the machine to make predictions for a more complicated example. Convolutional neural networks (CNN), which are one of the tools of machine learning, have proved to work well for assessing eigenfunctions in disordered systems. Here we apply a CNN to assess Kohn-Sham eigenfunctions obtained in density functional theory (DFT) simulations of the metal-insulator transition of a doped semiconductor. We demonstrate that a CNN that has been trained using eigenfunctions from a simulation of a doped semiconductor that neglects electron spin successfully predicts the critical concentration when presented with eigenfunctions from simulations that include spin.