Controllers comparison to balancing and trajectory tracking a two wheeled mobile robot

IF 0.8 4区 计算机科学 Q4 AUTOMATION & CONTROL SYSTEMS
A. Abougarair
{"title":"Controllers comparison to balancing and trajectory tracking a two wheeled mobile robot","authors":"A. Abougarair","doi":"10.15406/iratj.2019.05.00168","DOIUrl":null,"url":null,"abstract":"This paper presents an optimal controller design using three different algorithms for trajectory tracking of Two Wheeled Balancing Mobile Robot (TWBMR). All the proposed algorithms have been investigated through simulations under the influence of different inputs tracking and exogenous disturbance. This attempts to validate the significance of these algorithms in balance regulation and tracking trajectory. These algorithms are represented by PID-PID based parallel dual feed-back, serial dual feed-back and hybrid optimal control using Feed-forward PID and Feed-back LQR. Simulation results are provided to demonstrate that, the hybrid controller can achieve a better robust performance in comparing to the other two design algorithms. The graphical user interface (GUI) software has been used to show the simulation results in more convenient way.","PeriodicalId":54943,"journal":{"name":"International Journal of Robotics & Automation","volume":"C-20 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2019-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robotics & Automation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.15406/iratj.2019.05.00168","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents an optimal controller design using three different algorithms for trajectory tracking of Two Wheeled Balancing Mobile Robot (TWBMR). All the proposed algorithms have been investigated through simulations under the influence of different inputs tracking and exogenous disturbance. This attempts to validate the significance of these algorithms in balance regulation and tracking trajectory. These algorithms are represented by PID-PID based parallel dual feed-back, serial dual feed-back and hybrid optimal control using Feed-forward PID and Feed-back LQR. Simulation results are provided to demonstrate that, the hybrid controller can achieve a better robust performance in comparing to the other two design algorithms. The graphical user interface (GUI) software has been used to show the simulation results in more convenient way.
控制器与平衡和轨迹跟踪两轮移动机器人的比较
针对两轮平衡移动机器人的轨迹跟踪问题,提出了三种不同算法的最优控制器设计。在不同输入跟踪和外源干扰影响下,对所提出的算法进行了仿真研究。试图验证这些算法在平衡调节和跟踪轨迹方面的意义。这些算法包括基于PID-PID的并行双反馈、基于串行双反馈以及基于前馈PID和反馈LQR的混合最优控制。仿真结果表明,与其他两种设计算法相比,混合控制器具有更好的鲁棒性。采用图形用户界面(GUI)软件更方便地显示仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
44.40%
发文量
71
审稿时长
8 months
期刊介绍: First published in 1986, the International Journal of Robotics and Automation was one of the inaugural publications in the field of robotics. This journal covers contemporary developments in theory, design, and applications focused on all areas of robotics and automation systems, including new methods of machine learning, pattern recognition, biologically inspired evolutionary algorithms, fuzzy and neural networks in robotics and automation systems, computer vision, autonomous robots, human-robot interaction, microrobotics, medical robotics, mobile robots, biomechantronic systems, autonomous design of robotic systems, sensors, communication, and signal processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信