Multiphase flowrate measurement with time series sensing data and sequential model

Haokun Wang, Delin Hu, Yunjie Yang, Maomao Zhang
{"title":"Multiphase flowrate measurement with time series sensing data and sequential model","authors":"Haokun Wang, Delin Hu, Yunjie Yang, Maomao Zhang","doi":"10.1109/I2MTC50364.2021.9459959","DOIUrl":null,"url":null,"abstract":"Accurate multiphase flowrate measurement is challenging but crucially important in energy industry to monitor the production processes. Machine learning has recently emerged as a promising method to estimate the multiphase flowrate based on different flow meters. In this paper, we propose a Convolutional Neural Network (CNN) combined with Long-Short Term Memory (LSTM) model to estimate the mass liquid flowrate of oil/gas/water three-phase flow based on the Venturi tube. The range of the estimated mass flowrate of the liquid phase varies from 92.1 to 10000 kg/h. We collect time series sensing data from Venturi tube installed in a pilot-scale multiphase flow facility and utilize single-phase flowmeters to acquire reference data before mixing. The experimental results suggest the proposed CNN-LSTM model is able to effectively deal with the time series sensing data from Venturi tube and achieve acceptable liquid flowrate estimation under different flow conditions.","PeriodicalId":6772,"journal":{"name":"2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","volume":"27 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2MTC50364.2021.9459959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Accurate multiphase flowrate measurement is challenging but crucially important in energy industry to monitor the production processes. Machine learning has recently emerged as a promising method to estimate the multiphase flowrate based on different flow meters. In this paper, we propose a Convolutional Neural Network (CNN) combined with Long-Short Term Memory (LSTM) model to estimate the mass liquid flowrate of oil/gas/water three-phase flow based on the Venturi tube. The range of the estimated mass flowrate of the liquid phase varies from 92.1 to 10000 kg/h. We collect time series sensing data from Venturi tube installed in a pilot-scale multiphase flow facility and utilize single-phase flowmeters to acquire reference data before mixing. The experimental results suggest the proposed CNN-LSTM model is able to effectively deal with the time series sensing data from Venturi tube and achieve acceptable liquid flowrate estimation under different flow conditions.
多相流量测量的时间序列传感数据和序列模型
准确的多相流量测量在能源工业生产过程监控中具有挑战性,但又至关重要。近年来,机器学习作为一种很有前途的基于不同流量计的多相流量估计方法。本文提出了一种基于文丘里管的卷积神经网络(CNN)结合长短期记忆(LSTM)模型来估计油/气/水三相流的质量液流量。液相的估计质量流量范围为92.1 ~ 10000kg /h。我们从安装在中试多相流装置上的文丘里管收集时间序列传感数据,并在混合前利用单相流量计获取参考数据。实验结果表明,本文提出的CNN-LSTM模型能够有效处理文丘里管时间序列传感数据,并在不同流动条件下获得可接受的液体流量估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信