Nepal Chandra Roy, S. Monira, Rama Subba Reddy Gorla
{"title":"Buoyancy-driven flow of magnetohydrodynamic hybrid nanofluids in an open cavity with permeable horizontal walls","authors":"Nepal Chandra Roy, S. Monira, Rama Subba Reddy Gorla","doi":"10.1177/23977914231151481","DOIUrl":null,"url":null,"abstract":"The buoyancy-driven flow of hybrid nanofluids in an open cavity is examined in the presence of a magnetic field with an angle to the horizontal axis. The right end of the cavity is open, and the left wall is supposed to be heated. Moreover, the horizontal walls are deemed to be permeable and maintained at ambient temperature. The successive over-relaxation (SOR) technique is applied with the finite-difference method to solve the dimensionless equations. A comparison is executed with formerly published results which provide a good agreement. The grid refinement test has also been carried out to increase the accuracy. Flow and temperature profiles are investigated for the Rayleigh number ( Ra = 104, 105, 106), Reynolds number (Re = 5, 8, 10, 20, 100), Hartmann number ( Ha = 0, 5, 10), concentration of nanoparticles ( φ1 or φ2 = 0.0, 0.05, 0.1), angle of inclination of the magnetic field ( γ = 0°, 30°, 45°), aspect ratio ( A = 1, 2, 3, 4), and suction/blow parameter ( S = −1, 0, 1). Results have been elucidated based on streamlines, isotherms, local Nusselt number ( Nu), and average Nusselt number ( Nuavg). It is noted that the changes in the variables significantly affect streamlines and isotherms. The heat transfer for Cu-Fe3O4/water hybrid nanofluid is higher about 9.98% compared to Fe3O4/water nanofluid and 26.41% compared to water. Furthermore, all other parameters noticeably augment both Nu and Nuavg.","PeriodicalId":44789,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/23977914231151481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The buoyancy-driven flow of hybrid nanofluids in an open cavity is examined in the presence of a magnetic field with an angle to the horizontal axis. The right end of the cavity is open, and the left wall is supposed to be heated. Moreover, the horizontal walls are deemed to be permeable and maintained at ambient temperature. The successive over-relaxation (SOR) technique is applied with the finite-difference method to solve the dimensionless equations. A comparison is executed with formerly published results which provide a good agreement. The grid refinement test has also been carried out to increase the accuracy. Flow and temperature profiles are investigated for the Rayleigh number ( Ra = 104, 105, 106), Reynolds number (Re = 5, 8, 10, 20, 100), Hartmann number ( Ha = 0, 5, 10), concentration of nanoparticles ( φ1 or φ2 = 0.0, 0.05, 0.1), angle of inclination of the magnetic field ( γ = 0°, 30°, 45°), aspect ratio ( A = 1, 2, 3, 4), and suction/blow parameter ( S = −1, 0, 1). Results have been elucidated based on streamlines, isotherms, local Nusselt number ( Nu), and average Nusselt number ( Nuavg). It is noted that the changes in the variables significantly affect streamlines and isotherms. The heat transfer for Cu-Fe3O4/water hybrid nanofluid is higher about 9.98% compared to Fe3O4/water nanofluid and 26.41% compared to water. Furthermore, all other parameters noticeably augment both Nu and Nuavg.
期刊介绍:
Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems is a peer-reviewed scientific journal published since 2004 by SAGE Publications on behalf of the Institution of Mechanical Engineers. The journal focuses on research in the field of nanoengineering, nanoscience and nanotechnology and aims to publish high quality academic papers in this field. In addition, the journal is indexed in several reputable academic databases and abstracting services, including Scopus, Compendex, and CSA's Advanced Polymers Abstracts, Composites Industry Abstracts, and Earthquake Engineering Abstracts.