Positive Solutions for Some Weighted Elliptic Problems

IF 0.3 Q4 MATHEMATICS
H. Zahed
{"title":"Positive Solutions for Some Weighted Elliptic Problems","authors":"H. Zahed","doi":"10.3844/jmssp.2020.125.132","DOIUrl":null,"url":null,"abstract":"In this study, we study the existence and the nonexistence of positive solutions for the following nonlinear elliptic problems:  (P)where, Ω is a regular bounded domain in ℝ , N ≥ 2, a(x) is a smooth function on   and f(x, s) is asymptotically linear in s at infinity, that is  = l < ∞. We will prove that the problem (P) has a positive solution for l large enough and does not have positive solutions for l less than the first eigenvalue of the operator. We prove also that the method works for the case when f(x, s) is sub-critical and super-linear at +∞.2010 Mathematics Subject classification: 35J05, 35J65, 35J20, 35J60, 35K57, 35J70.","PeriodicalId":41981,"journal":{"name":"Jordan Journal of Mathematics and Statistics","volume":"35 1","pages":"125-132"},"PeriodicalIF":0.3000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/jmssp.2020.125.132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we study the existence and the nonexistence of positive solutions for the following nonlinear elliptic problems:  (P)where, Ω is a regular bounded domain in ℝ , N ≥ 2, a(x) is a smooth function on   and f(x, s) is asymptotically linear in s at infinity, that is  = l < ∞. We will prove that the problem (P) has a positive solution for l large enough and does not have positive solutions for l less than the first eigenvalue of the operator. We prove also that the method works for the case when f(x, s) is sub-critical and super-linear at +∞.2010 Mathematics Subject classification: 35J05, 35J65, 35J20, 35J60, 35K57, 35J70.
若干加权椭圆型问题的正解
本文研究了以下非线性椭圆型问题的正解的存在性和不存在性:(P)其中,Ω是一个正则有界域,N≥2,a(x)是上的光滑函数,f(x, s)在s无穷远处渐近线性,即= l <∞。我们将证明问题(P)对于l有一个足够大的正解,并且对于l小于算子的第一个特征值没有正解。我们还证明了该方法适用于f(x, s)在+∞上是次临界和超线性的情况数学学科分类:35J05、35J65、35J20、35J60、35K57、35J70。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信