Mechanochemical Synthesis of Dendrimers as Nanocarriers: A Review

Mohammad Alrbaihat
{"title":"Mechanochemical Synthesis of Dendrimers as Nanocarriers: A Review","authors":"Mohammad Alrbaihat","doi":"10.4028/p-a610b7","DOIUrl":null,"url":null,"abstract":"The process of mechanically activating chemical bonds usually involves applying external force. Since mechanical chemistry can be performed without solvents or with minimal amounts of solvent (catalytic quantities), it has become an imperative synthetic tool in multiple fields (e.g., physics, chemistry, and materials science) and is an attractive greener method for preparing diverse molecules. Catalysis, organic synthesis, solid-state medicinal preparation, metal complex synthesis, and many other chemistry fields have benefited from sustainable methods. The purpose of this paper is to shed light on the benefits of using mechanochemical methods to produce a pharmaceutical crystal that is composed of dendrimer nanocrystals. Consequently, we describe and examine the importance of mechanical procedures in forming dendrimers and pharmaceutical crystals in this review.","PeriodicalId":7271,"journal":{"name":"Advanced Materials Research","volume":"31 1","pages":"37 - 46"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-a610b7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The process of mechanically activating chemical bonds usually involves applying external force. Since mechanical chemistry can be performed without solvents or with minimal amounts of solvent (catalytic quantities), it has become an imperative synthetic tool in multiple fields (e.g., physics, chemistry, and materials science) and is an attractive greener method for preparing diverse molecules. Catalysis, organic synthesis, solid-state medicinal preparation, metal complex synthesis, and many other chemistry fields have benefited from sustainable methods. The purpose of this paper is to shed light on the benefits of using mechanochemical methods to produce a pharmaceutical crystal that is composed of dendrimer nanocrystals. Consequently, we describe and examine the importance of mechanical procedures in forming dendrimers and pharmaceutical crystals in this review.
机械化学合成树状大分子纳米载体的研究进展
机械激活化学键的过程通常需要施加外力。由于机械化学可以在没有溶剂或少量溶剂(催化量)的情况下进行,因此它已成为多个领域(例如,物理,化学和材料科学)必不可少的合成工具,并且是制备各种分子的有吸引力的绿色方法。催化、有机合成、固体药物制剂、金属配合物合成以及许多其他化学领域都受益于可持续方法。本文的目的是阐明利用机械化学方法生产由树状纳米晶体组成的药物晶体的好处。因此,我们在这篇综述中描述和研究了机械过程在形成树状大分子和药物晶体中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信