Identification of diverse database subsets using property-based and fragment-based molecular descriptions

Mark Ashton, J. Barnard, F. Casset, M. Charlton, G. Downs, D. Gorse, J. Holliday, R. Lahana, P. Willett
{"title":"Identification of diverse database subsets using property-based and fragment-based molecular descriptions","authors":"Mark Ashton, J. Barnard, F. Casset, M. Charlton, G. Downs, D. Gorse, J. Holliday, R. Lahana, P. Willett","doi":"10.1002/QSAR.200290002","DOIUrl":null,"url":null,"abstract":"This paper reports a comparison of calculated molecular properties and of 2D fragment bit-strings when used for the selection of structurally diverse subsets of a file of 44295 compounds. MaxMin dissimilarity-based selection and k-means cluster-based selection are used to select subsets containing between 1% and 20% of the file. Investigation of the numbers of bioactive molecules in the selected subsets suggest: that the MaxMin subsets are noticeably superior to the k-means subsets; that the property-based descriptors are marginally superior to the fragment-based descriptors; and that both approaches are noticeably superior to random selection.","PeriodicalId":20818,"journal":{"name":"Quantitative Structure-activity Relationships","volume":"34 1","pages":"598-604"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Structure-activity Relationships","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/QSAR.200290002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63

Abstract

This paper reports a comparison of calculated molecular properties and of 2D fragment bit-strings when used for the selection of structurally diverse subsets of a file of 44295 compounds. MaxMin dissimilarity-based selection and k-means cluster-based selection are used to select subsets containing between 1% and 20% of the file. Investigation of the numbers of bioactive molecules in the selected subsets suggest: that the MaxMin subsets are noticeably superior to the k-means subsets; that the property-based descriptors are marginally superior to the fragment-based descriptors; and that both approaches are noticeably superior to random selection.
使用基于属性和基于片段的分子描述识别不同的数据库子集
本文报道了计算分子性质和二维片段位串的比较,用于选择结构不同的44295个化合物的文件子集。基于MaxMin不相似度的选择和基于k-means聚类的选择用于选择包含1%到20%文件的子集。对所选子集中生物活性分子数量的调查表明:MaxMin子集明显优于k-means子集;基于属性的描述符略优于基于片段的描述符;两种方法都明显优于随机选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信