Haiqing Wang, Guodong Wang, Jianguang Fang, Zengjie Jiang, M. Du, Yaping Gao, Jinghui Fang
{"title":"Acute sulphide toxicity in Perinereis aibuhitensis under different salinities and temperatures: LC50 and antioxidant responses","authors":"Haiqing Wang, Guodong Wang, Jianguang Fang, Zengjie Jiang, M. Du, Yaping Gao, Jinghui Fang","doi":"10.3354/AB00674","DOIUrl":null,"url":null,"abstract":"Sulphide accumulates in sediment due to global aquaculture development and is very harmful to aquatic and benthic ecosystems. Perinereis aibuhitensis inhabits coastal areas and is often exposed to fairly high sulphide concentrations. The present study investigated the tolerance of P. aibuhitensis to sulphide to evaluate its potential application in sulphide remediation and sustainable aquaculture. We assessed the toxicity of sulphide on P. aibuhitensis in a 96 h acute sulphide exposure experiment under different temperature and salinity conditions. Two-way ANOVA showed that increasing salinity did not influence the LC50 of P. aibuhitensis exposed to sulphide. In contrast, increasing temperature significantly augmented the LC50 value (p < 0.05). The results showed a negative relationship between mortality and temperature, and between mortality and exposure time. Subsequently, we performed 2-way ANOVA analysis of the antioxidant (superoxide dismutase [SOD], catalase [CAT] and total antioxidant capacity [T-AOC]) responses of P. aibuhitensis during 96 h exposure to sub-lethal sulphide concentrations (0, 80, 160, 320, and 640 μmol l−1), and a sub sequent recovery period. The activation of this antioxidant defense system appeared to depend on sulphide concentration and exposure duration and their interaction. SOD, CAT, and T-AOC showed obvious differences at the beginning and end of exposure. They were steadily restored during the recovery period. The results indicated that P. aibuhitensis adjusts its antioxidant defense system to cope with sulphide contamination. Therefore, these indexes of P. aibuhitensis could be applied to environmental monitoring and bio-restoration at mudflat or intensive aquaculture areas with high sulphide concentrations.","PeriodicalId":8111,"journal":{"name":"Aquatic Biology","volume":"61 1","pages":"75-85"},"PeriodicalIF":1.3000,"publicationDate":"2017-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3354/AB00674","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 6
Abstract
Sulphide accumulates in sediment due to global aquaculture development and is very harmful to aquatic and benthic ecosystems. Perinereis aibuhitensis inhabits coastal areas and is often exposed to fairly high sulphide concentrations. The present study investigated the tolerance of P. aibuhitensis to sulphide to evaluate its potential application in sulphide remediation and sustainable aquaculture. We assessed the toxicity of sulphide on P. aibuhitensis in a 96 h acute sulphide exposure experiment under different temperature and salinity conditions. Two-way ANOVA showed that increasing salinity did not influence the LC50 of P. aibuhitensis exposed to sulphide. In contrast, increasing temperature significantly augmented the LC50 value (p < 0.05). The results showed a negative relationship between mortality and temperature, and between mortality and exposure time. Subsequently, we performed 2-way ANOVA analysis of the antioxidant (superoxide dismutase [SOD], catalase [CAT] and total antioxidant capacity [T-AOC]) responses of P. aibuhitensis during 96 h exposure to sub-lethal sulphide concentrations (0, 80, 160, 320, and 640 μmol l−1), and a sub sequent recovery period. The activation of this antioxidant defense system appeared to depend on sulphide concentration and exposure duration and their interaction. SOD, CAT, and T-AOC showed obvious differences at the beginning and end of exposure. They were steadily restored during the recovery period. The results indicated that P. aibuhitensis adjusts its antioxidant defense system to cope with sulphide contamination. Therefore, these indexes of P. aibuhitensis could be applied to environmental monitoring and bio-restoration at mudflat or intensive aquaculture areas with high sulphide concentrations.
期刊介绍:
AB publishes rigorously refereed and carefully selected Feature Articles, Research Articles, Reviews and Notes, as well as Comments/Reply Comments (for details see MEPS 228:1), Theme Sections, Opinion Pieces (previously called ''As I See It'') (for details consult the Guidelines for Authors) concerned with the biology, physiology, biochemistry and genetics (including the ’omics‘) of all aquatic organisms under laboratory and field conditions, and at all levels of organisation and investigation. Areas covered include:
-Biological aspects of biota: Evolution and speciation; life histories; biodiversity, biogeography and phylogeography; population genetics; biological connectedness between marine and freshwater biota; paleobiology of aquatic environments; invasive species.
-Biochemical and physiological aspects of aquatic life; synthesis and conversion of organic matter (mechanisms of auto- and heterotrophy, digestion, respiration, nutrition); thermo-, ion, osmo- and volume-regulation; stress and stress resistance; metabolism and energy budgets; non-genetic and genetic adaptation.
-Species interactions: Environment–organism and organism–organism interrelationships; predation: defenses (physical and chemical); symbioses.
-Molecular biology of aquatic life.
-Behavior: Orientation in space and time; migrations; feeding and reproductive behavior; agonistic behavior.
-Toxicology and water-quality effects on organisms; anthropogenic impacts on aquatic biota (e.g. pollution, fisheries); stream regulation and restoration.
-Theoretical biology: mathematical modelling of biological processes and species interactions.
-Methodology and equipment employed in aquatic biological research; underwater exploration and experimentation.
-Exploitation of aquatic biota: Fisheries; cultivation of aquatic organisms: use, management, protection and conservation of living aquatic resources.
-Reproduction and development in marine, brackish and freshwater organisms