An embedded discontinuous Galerkin method for the Oseen equations

IF 1.9 3区 数学 Q2 Mathematics
Yongbin Han, Yanren Hou
{"title":"An embedded discontinuous Galerkin method for the Oseen equations","authors":"Yongbin Han, Yanren Hou","doi":"10.1051/m2an/2021059","DOIUrl":null,"url":null,"abstract":"In this paper, the a prior error estimates of an embedded discontinuous Galerkin method for the Oseen equations are presented. It is proved that the velocity error in the L 2 (Ω) norm, has an optimal error bound with convergence order k + 1, where the constants are dependent on the Reynolds number (or ν − 1 ), in the diffusion-dominated regime, and in the convection-dominated regime, it has a Reynolds-robust error bound with quasi-optimal convergence order k +1 / 2. Here, k is the polynomial order of the velocity space. In addition, we also prove an optimal error estimate for the pressure. Finally, we carry out some numerical experiments to corroborate our analytical results.","PeriodicalId":50499,"journal":{"name":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/m2an/2021059","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, the a prior error estimates of an embedded discontinuous Galerkin method for the Oseen equations are presented. It is proved that the velocity error in the L 2 (Ω) norm, has an optimal error bound with convergence order k + 1, where the constants are dependent on the Reynolds number (or ν − 1 ), in the diffusion-dominated regime, and in the convection-dominated regime, it has a Reynolds-robust error bound with quasi-optimal convergence order k +1 / 2. Here, k is the polynomial order of the velocity space. In addition, we also prove an optimal error estimate for the pressure. Finally, we carry out some numerical experiments to corroborate our analytical results.
Oseen方程的嵌入不连续伽辽金法
本文给出了Oseen方程的嵌入式不连续伽辽金方法的先验误差估计。证明了l2 (Ω)范数中的速度误差在扩散主导下具有收敛阶为k +1的最优误差界,其中常数依赖于雷诺数(或ν−1),在对流主导下具有拟最优收敛阶为k +1 / 2的Reynolds-鲁棒误差界。这里,k是速度空间的多项式阶。此外,我们还证明了压力的最优误差估计。最后,我们进行了一些数值实验来证实我们的分析结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
5.30%
发文量
27
审稿时长
6-12 weeks
期刊介绍: M2AN publishes original research papers of high scientific quality in two areas: Mathematical Modelling, and Numerical Analysis. Mathematical Modelling comprises the development and study of a mathematical formulation of a problem. Numerical Analysis comprises the formulation and study of a numerical approximation or solution approach to a mathematically formulated problem. Papers should be of interest to researchers and practitioners that value both rigorous theoretical analysis and solid evidence of computational relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信