Katrin P. Guillen, E. Ruben, N. Virani, R. Harrison
{"title":"Annexin-directed &bgr;-glucuronidase for the targeted treatment of solid tumors","authors":"Katrin P. Guillen, E. Ruben, N. Virani, R. Harrison","doi":"10.1093/protein/gzw063","DOIUrl":null,"url":null,"abstract":"Enzyme prodrug therapy has the potential to remedy the lack of selectivity associated with the systemic administration of chemotherapy. However, most current systems are immunogenic and constrained to a monotherapeutic approach. We developed a new class of fusion proteins centered about the human enzyme &bgr;-glucuronidase (&bgr;G), capable of converting several innocuous prodrugs into chemotherapeutics. We targeted &bgr;G to phosphatidylserine on tumor cells, tumor vasculature and metastases via annexin A1/A5. Phosphatidylserine shows promise as a universal marker for solid tumors and allows for tumor type-independent targeting. To create fusion proteins, human annexin A1/A5 was genetically fused to the activity-enhancing 16a3 mutant of human &bgr;G, expressed in chemically defined, fed-batch suspension culture, and chromatographically purified. All fusion constructs achieved >95% purity with yields up to 740 &mgr;g/l. Fusion proteins displayed cancer selective cell-surface binding with cell line-dependent binding stability. One fusion protein in combination with the prodrug SN-38 glucuronide was as effective as the drug SN-38 on Panc-1 pancreatic cancer cells and HAAE-1 endothelial cells, and demonstrated efficacy against MCF-7 breast cancer cells. &bgr;G fusion proteins effectively enable localized combination therapy that can be tailored to each patient via prodrug selection, with promising clinical potential based on their near fully human design.","PeriodicalId":20681,"journal":{"name":"Protein Engineering, Design and Selection","volume":"23 1","pages":"85–94"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Engineering, Design and Selection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/protein/gzw063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Enzyme prodrug therapy has the potential to remedy the lack of selectivity associated with the systemic administration of chemotherapy. However, most current systems are immunogenic and constrained to a monotherapeutic approach. We developed a new class of fusion proteins centered about the human enzyme &bgr;-glucuronidase (&bgr;G), capable of converting several innocuous prodrugs into chemotherapeutics. We targeted &bgr;G to phosphatidylserine on tumor cells, tumor vasculature and metastases via annexin A1/A5. Phosphatidylserine shows promise as a universal marker for solid tumors and allows for tumor type-independent targeting. To create fusion proteins, human annexin A1/A5 was genetically fused to the activity-enhancing 16a3 mutant of human &bgr;G, expressed in chemically defined, fed-batch suspension culture, and chromatographically purified. All fusion constructs achieved >95% purity with yields up to 740 &mgr;g/l. Fusion proteins displayed cancer selective cell-surface binding with cell line-dependent binding stability. One fusion protein in combination with the prodrug SN-38 glucuronide was as effective as the drug SN-38 on Panc-1 pancreatic cancer cells and HAAE-1 endothelial cells, and demonstrated efficacy against MCF-7 breast cancer cells. &bgr;G fusion proteins effectively enable localized combination therapy that can be tailored to each patient via prodrug selection, with promising clinical potential based on their near fully human design.