D. Das, Katsura Kobayashi, M. Smylie, C. Mielke, Takeshi Takahashi, K. Willa, Jiaxin Yin, U. Welp, M. Z. Hasan, A. Amato, H. Luetkens, Z. Guguchia
{"title":"Time-reversal invariant and fully gapped unconventional superconducting state in the bulk of the topological compound \nNb0.25Bi2Se3","authors":"D. Das, Katsura Kobayashi, M. Smylie, C. Mielke, Takeshi Takahashi, K. Willa, Jiaxin Yin, U. Welp, M. Z. Hasan, A. Amato, H. Luetkens, Z. Guguchia","doi":"10.1103/physrevb.102.134514","DOIUrl":null,"url":null,"abstract":"Recently, the niobium (Nb)-doped topological insulator Bi_2Se_3, in which the finite magnetic moments of the Nb atoms are intercalated in the van der Waals gap between the Bi_2Se_3 layers, has been shown to exhibit both superconductivity with T_c = 3 K and topological surface states. Here we report on muon spin rotation experiments probing the temperature-dependent of effective magnetic penetration depth Lambda_eff(T) in the layered topological superconductor candidate Nb_0.25Bi_2Se_3. The exponential temperature dependence of lambda_(eff)^(-2)(T) at low temperatures suggests a fully gapped superconducting state in the bulk with the superconducting transition temperature T_c = 2.9 K and the gap to T_c ratio 2Delta/k_BT_c = 3.95(19). We also revealed that the ratio T_c/lambda_(eff)^(-2) is comparable to those of unconventional superconductors, which hints at an unconventional pairing mechanism. Furthermore, time reversal symmetry breaking was excluded in the superconducting state with sensitive zero-field muSR experiments. We hope the present results will stimulate theoretical investigations to obtain a microscopic understanding of the relation between superconductivity and the topologically non-trivial electronic structure of Nb_0.25Bi_2Se_3.","PeriodicalId":8514,"journal":{"name":"arXiv: Superconductivity","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Superconductivity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevb.102.134514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Recently, the niobium (Nb)-doped topological insulator Bi_2Se_3, in which the finite magnetic moments of the Nb atoms are intercalated in the van der Waals gap between the Bi_2Se_3 layers, has been shown to exhibit both superconductivity with T_c = 3 K and topological surface states. Here we report on muon spin rotation experiments probing the temperature-dependent of effective magnetic penetration depth Lambda_eff(T) in the layered topological superconductor candidate Nb_0.25Bi_2Se_3. The exponential temperature dependence of lambda_(eff)^(-2)(T) at low temperatures suggests a fully gapped superconducting state in the bulk with the superconducting transition temperature T_c = 2.9 K and the gap to T_c ratio 2Delta/k_BT_c = 3.95(19). We also revealed that the ratio T_c/lambda_(eff)^(-2) is comparable to those of unconventional superconductors, which hints at an unconventional pairing mechanism. Furthermore, time reversal symmetry breaking was excluded in the superconducting state with sensitive zero-field muSR experiments. We hope the present results will stimulate theoretical investigations to obtain a microscopic understanding of the relation between superconductivity and the topologically non-trivial electronic structure of Nb_0.25Bi_2Se_3.