Ahmed Elkholy, Saurabh Saxena, R. Nandwana, A. Elshazly, P. Hanumolu
{"title":"A 4mW wide bandwidth ring-based fractional-n DPLL with 1.9psrms integrated-jitter","authors":"Ahmed Elkholy, Saurabh Saxena, R. Nandwana, A. Elshazly, P. Hanumolu","doi":"10.1109/CICC.2015.7338376","DOIUrl":null,"url":null,"abstract":"In this paper, a ring oscillator based fractional-N DPLL that achieves low jitter by extending bandwidth using noise cancellation techniques is presented. A dual-path digital loop filter architecture is employed to resolve the ΔΣ DAC quantization noise challenge. Fabricated in 65nm CMOS process, the proposed PLL operates over a wide frequency range of 4GHz-5.5GHz and achieves 1.9psrms jitter while consuming only 4mW. The measured in-band phase noise is better than -96 dBc/Hz at 1MHz offset. The proposed FNDPLL achieves wide bandwidth up to 6MHz using a 50 MHz reference. The FoM is -228.5dB, which is at least 20dB better than all reported ring-based FNDPLLs.","PeriodicalId":6665,"journal":{"name":"2015 IEEE Custom Integrated Circuits Conference (CICC)","volume":"34 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Custom Integrated Circuits Conference (CICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC.2015.7338376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper, a ring oscillator based fractional-N DPLL that achieves low jitter by extending bandwidth using noise cancellation techniques is presented. A dual-path digital loop filter architecture is employed to resolve the ΔΣ DAC quantization noise challenge. Fabricated in 65nm CMOS process, the proposed PLL operates over a wide frequency range of 4GHz-5.5GHz and achieves 1.9psrms jitter while consuming only 4mW. The measured in-band phase noise is better than -96 dBc/Hz at 1MHz offset. The proposed FNDPLL achieves wide bandwidth up to 6MHz using a 50 MHz reference. The FoM is -228.5dB, which is at least 20dB better than all reported ring-based FNDPLLs.