{"title":"The speed of random walk on Galton-Watson trees with vanishing conductances","authors":"Tabea Glatzel, J. Nagel","doi":"10.1214/21-ejp645","DOIUrl":null,"url":null,"abstract":"In this paper we consider random walks on Galton-Watson trees with random conductances. On these trees, the distance of the walker to the root satisfies a law of large numbers with limit the effective velocity, or speed of the walk. We study the regularity of the speed as a function of the distribution of conductances, in particular when the distribution of conductances converges to a non-elliptic limit.","PeriodicalId":8470,"journal":{"name":"arXiv: Probability","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/21-ejp645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we consider random walks on Galton-Watson trees with random conductances. On these trees, the distance of the walker to the root satisfies a law of large numbers with limit the effective velocity, or speed of the walk. We study the regularity of the speed as a function of the distribution of conductances, in particular when the distribution of conductances converges to a non-elliptic limit.