Analysis of approximation algorithms for the traveling salesman problem in near-metric graphs

S. Krug
{"title":"Analysis of approximation algorithms for the traveling salesman problem in near-metric graphs","authors":"S. Krug","doi":"10.3929/ETHZ-A-006519144","DOIUrl":null,"url":null,"abstract":"We consider the beta-metric traveling salesman problem (Delta-beta-TSP), i.e., the TSP restricted to input instances satisfying the beta-triangle inequality c({v,w}) <= beta * (c{v,u} + c{u,w}), for any three vertices u,v,w. The well-known path matching Christofides algorithm (PMCA) provides an approximation ratio of 3/2 * beta^2 and is the best known algorithm in the range 1 <= beta <= 2. We show that this upper bound is tight by providing a worst-case example. This example can also be used to show the tightness of the upper bound for the PMCA variants for the Hamiltonian path problem with zero and one prespecified endpoints. For two prespecified endpoints, we cannot reuse the example, but we construct another worst-case example to show the tightness of the upper bound also in this case. Furthermore, we establish improved lower bounds for an approximation algorithm for the metric Hamiltonian path problem as well as for two approximation algorithms for the metric TSP reoptimization problem.","PeriodicalId":10841,"journal":{"name":"CTIT technical reports series","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2011-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CTIT technical reports series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3929/ETHZ-A-006519144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We consider the beta-metric traveling salesman problem (Delta-beta-TSP), i.e., the TSP restricted to input instances satisfying the beta-triangle inequality c({v,w}) <= beta * (c{v,u} + c{u,w}), for any three vertices u,v,w. The well-known path matching Christofides algorithm (PMCA) provides an approximation ratio of 3/2 * beta^2 and is the best known algorithm in the range 1 <= beta <= 2. We show that this upper bound is tight by providing a worst-case example. This example can also be used to show the tightness of the upper bound for the PMCA variants for the Hamiltonian path problem with zero and one prespecified endpoints. For two prespecified endpoints, we cannot reuse the example, but we construct another worst-case example to show the tightness of the upper bound also in this case. Furthermore, we establish improved lower bounds for an approximation algorithm for the metric Hamiltonian path problem as well as for two approximation algorithms for the metric TSP reoptimization problem.
近度量图中旅行商问题的逼近算法分析
我们考虑β -度量旅行商问题(delta - β -TSP),即TSP被限制为满足β -三角形不等式c({v,w}) <= β * (c{v,u} + c{u,w})的输入实例,对于任意三个顶点u,v,w。众所周知的路径匹配Christofides算法(PMCA)提供了3/2 * beta^2的近似值,是1 <= beta <= 2范围内最著名的算法。我们通过提供一个最坏情况的例子来证明这个上界是紧的。这个例子还可以用来显示具有零和一个预先指定端点的哈密顿路径问题的PMCA变体上界的紧密性。对于两个预先指定的端点,我们不能重用这个例子,但是我们构造了另一个最坏情况的例子来显示在这种情况下上界的紧密性。此外,我们还建立了度量哈密顿路径问题的一种近似算法和度量TSP再优化问题的两种近似算法的改进下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信