{"title":"Histogram clustering for unsupervised image segmentation","authors":"J. Puzicha, J. Buhmann, Thomas Hofmann","doi":"10.1109/CVPR.1999.784981","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel statistical mixture model for probabilistic grouping of distributional (histogram) data. Adopting the Bayesian framework, we propose to perform annealed maximum a posteriori estimation to compute optimal clustering solutions. In order to accelerate the optimization process, an efficient multiscale formulation is developed. We present a prototypical application of this method for the unsupervised segmentation of textured images based on local distributions of Gabor coefficients. Benchmark results indicate superior performance compared to K-means clustering and proximity-based algorithms.","PeriodicalId":20644,"journal":{"name":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1999-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"94","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1999.784981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 94
Abstract
This paper introduces a novel statistical mixture model for probabilistic grouping of distributional (histogram) data. Adopting the Bayesian framework, we propose to perform annealed maximum a posteriori estimation to compute optimal clustering solutions. In order to accelerate the optimization process, an efficient multiscale formulation is developed. We present a prototypical application of this method for the unsupervised segmentation of textured images based on local distributions of Gabor coefficients. Benchmark results indicate superior performance compared to K-means clustering and proximity-based algorithms.