Designing fuzzy rule base using Spider Monkey Optimization Algorithm in cooperative framework

Joydip Dhar , Surbhi Arora
{"title":"Designing fuzzy rule base using Spider Monkey Optimization Algorithm in cooperative framework","authors":"Joydip Dhar ,&nbsp;Surbhi Arora","doi":"10.1016/j.fcij.2017.04.004","DOIUrl":null,"url":null,"abstract":"<div><p>The paper focusses on the implementation of cooperative Spider Monkey Optimization Algorithm (SMO) to design and optimize the fuzzy rule base. Spider Monkey Optimization Algorithm is a fission-fusion based Swarm Intelligence algorithm. Cooperative Spider Monkey Algorithm is an off-line algorithm used to optimize all the free parameters in a fuzzy rule base. The Spider Monkeys are divided into various groups the solution from each group represents a fuzzy rule. These groups work in a cooperative way to design the whole fuzzy rule base. Simulation on fuzzy rules of two nonlinear controllers is done with a parametric study to verify the performance of the algorithm. It is observed that the root mean square error (RMSE) is least in the case of SMO than the other evolutionary algorithms applied in the literature to solve the problem of fuzzy rule designs like Particle Swarm Optimization (PSO), Ant Colony Optimization algorithm (ACO) algorithms.</p></div>","PeriodicalId":100561,"journal":{"name":"Future Computing and Informatics Journal","volume":"2 1","pages":"Pages 31-38"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.fcij.2017.04.004","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Computing and Informatics Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2314728816300277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The paper focusses on the implementation of cooperative Spider Monkey Optimization Algorithm (SMO) to design and optimize the fuzzy rule base. Spider Monkey Optimization Algorithm is a fission-fusion based Swarm Intelligence algorithm. Cooperative Spider Monkey Algorithm is an off-line algorithm used to optimize all the free parameters in a fuzzy rule base. The Spider Monkeys are divided into various groups the solution from each group represents a fuzzy rule. These groups work in a cooperative way to design the whole fuzzy rule base. Simulation on fuzzy rules of two nonlinear controllers is done with a parametric study to verify the performance of the algorithm. It is observed that the root mean square error (RMSE) is least in the case of SMO than the other evolutionary algorithms applied in the literature to solve the problem of fuzzy rule designs like Particle Swarm Optimization (PSO), Ant Colony Optimization algorithm (ACO) algorithms.

基于蜘蛛猴优化算法的模糊规则库设计
本文重点研究了采用协作式蜘蛛猴优化算法(SMO)对模糊规则库进行设计和优化。蜘蛛猴优化算法是一种基于裂变聚变的群体智能算法。协作蜘蛛猴算法是一种离线算法,用于对模糊规则库中的所有自由参数进行优化。蜘蛛猴被分成不同的组,每组的解决方案代表一个模糊规则。这些小组以合作的方式设计整个模糊规则库。对两个非线性控制器的模糊规则进行了仿真,并进行了参数化研究,验证了算法的性能。可以观察到,与文献中用于解决模糊规则设计问题的其他进化算法如粒子群优化(PSO)、蚁群优化算法(ACO)相比,SMO情况下的均方根误差(RMSE)最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信