Kun Zhang, David H. Blum, Hwakong Cheng, G. Paliaga, M. Wetter, J. Granderson
{"title":"Estimating ASHRAE Guideline 36 energy savings for multi-zone variable air volume systems using Spawn of EnergyPlus","authors":"Kun Zhang, David H. Blum, Hwakong Cheng, G. Paliaga, M. Wetter, J. Granderson","doi":"10.1080/19401493.2021.2021286","DOIUrl":null,"url":null,"abstract":"ASHRAE Guideline 36 (G36) publishes high-performance control sequences for Variable Air Volume (VAV) system operation. Retrofitting existing VAV control sequences to G36 promises to have a large potential for energy savings. However, it is difficult to estimate the savings accurately and the process of doing so can be costly and time-consuming. This paper evaluates the energy use of a multi-zone VAV system with terminal reheat using the G36 sequences and compares it to a group of baseline control sequences that represent existing practices. Spawn of EnergyPlus is used for the whole building simulation, where the envelope is modelled in EnergyPlus and the HVAC equipment and its pressure-flow network and the control sequences are modelled in Modelica. The comparison of the control sequences performance is further conducted in parametric studies. For a medium-sized commercial building, the G36 sequences provide a wide range of HVAC energy savings with an average of 31%.","PeriodicalId":49168,"journal":{"name":"Journal of Building Performance Simulation","volume":"37 1","pages":"215 - 236"},"PeriodicalIF":2.2000,"publicationDate":"2022-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Building Performance Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/19401493.2021.2021286","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 14
Abstract
ASHRAE Guideline 36 (G36) publishes high-performance control sequences for Variable Air Volume (VAV) system operation. Retrofitting existing VAV control sequences to G36 promises to have a large potential for energy savings. However, it is difficult to estimate the savings accurately and the process of doing so can be costly and time-consuming. This paper evaluates the energy use of a multi-zone VAV system with terminal reheat using the G36 sequences and compares it to a group of baseline control sequences that represent existing practices. Spawn of EnergyPlus is used for the whole building simulation, where the envelope is modelled in EnergyPlus and the HVAC equipment and its pressure-flow network and the control sequences are modelled in Modelica. The comparison of the control sequences performance is further conducted in parametric studies. For a medium-sized commercial building, the G36 sequences provide a wide range of HVAC energy savings with an average of 31%.
期刊介绍:
The Journal of Building Performance Simulation (JBPS) aims to make a substantial and lasting contribution to the international building community by supporting our authors and the high-quality, original research they submit. The journal also offers a forum for original review papers and researched case studies
We welcome building performance simulation contributions that explore the following topics related to buildings and communities:
-Theoretical aspects related to modelling and simulating the physical processes (thermal, air flow, moisture, lighting, acoustics).
-Theoretical aspects related to modelling and simulating conventional and innovative energy conversion, storage, distribution, and control systems.
-Theoretical aspects related to occupants, weather data, and other boundary conditions.
-Methods and algorithms for optimizing the performance of buildings and communities and the systems which service them, including interaction with the electrical grid.
-Uncertainty, sensitivity analysis, and calibration.
-Methods and algorithms for validating models and for verifying solution methods and tools.
-Development and validation of controls-oriented models that are appropriate for model predictive control and/or automated fault detection and diagnostics.
-Techniques for educating and training tool users.
-Software development techniques and interoperability issues with direct applicability to building performance simulation.
-Case studies involving the application of building performance simulation for any stage of the design, construction, commissioning, operation, or management of buildings and the systems which service them are welcomed if they include validation or aspects that make a novel contribution to the knowledge base.